DOI QR코드

DOI QR Code

Garment Formability, Appearance Characteristics and Mechanical Properties of Worsted Fabrics for High Emotional Women's Fabrics

고감성 여성의류용 소모직물의 역학특성, 외관특성 및 의류형성성능

  • 김현아 (한국패션산업연구원 연구개발본부)
  • Received : 2017.04.18
  • Accepted : 2017.06.01
  • Published : 2017.06.30

Abstract

This study investigated the formability and appearance performance of 20 women's worsted fabrics. For this purpose, 10 foreign fabrics (9 Italian + 1 Japan fabrics) were prepared and 10 domestic worsted fabrics for women were made in Cheil woolen textile company for comparing with foreign fabrics. The mechanical properties of the 20 fabrics were measured using KES-FB and FAST systems; subsequently, fabric formability (F) and total appearance value (TAV) were calculated and compared with a virtual 3-D simulation silhouette by i-designer CAD system. The fabric formability of the domestic fabrics, calculated by KES-FB system, was lower than foreign fabrics, which was assumed to be caused by the stiff tactile property. The result was similar to that of the FAST system. Good wearing performance of the foreign worsted fabric was assumed to be caused by high extensibility and the compressibility of the fabrics. The TAV's of the domestic fabrics were also lower than foreign fabrics. Both the correlation between TAV and formability by the KESFB system and the correlation between TAV and formability by FAST system showed a good correlation coefficient. Fabric formability between KES-FB and FAST systems also showed a good correlation. The 3-D simulation silhouette of the foreign fabric by i-designer CAD system appeared superior to the domestic one, and assumed to be attributed to the low extensibility of the weft direction, stiff bending and high shear properties of the fabric.

Keywords

References

  1. Dastoor, P. H., Hersh, S. P., Batra, S. K., & Rasdorf, W. J. (1994a). Computer-assisted structural design of industrial woven fabrics Part I: Need, scope, background, and system architecture. Journal of the Textile Institute, 85(2), 89-109. doi:10.1080/00405009408659014
  2. Dastoor, P. H., Hersh, S. P., Batra, S. K., & Rasdorf, W. J. (1994b). Computer-assisted structural design of industrial woven fabrics Part II: System operation, heuristic design. Journal of the Textile Institute, 85(2), 110-134. doi:10.1080/00405009408659015
  3. Dastoor, P. H., Ghosh, T. K., Batra, S. K., & Hersh, S. P. (1994c). Computer-assisted structural design of industrial woven fabrics part III: modelling of fabric uniaxial/biaxial load-deformation. Journal of the Textile Institute, 85(2), 135-157. doi:10.1080/00405009408659016
  4. Gaudreau, E., & Agatstein, S. (1989). The CSIRO division of wool technology. Fabric assurance by simple testing instruction manual.
  5. Fan, J., & Hunter, L. (1998a). A worsted fabric expert system Part I: System development. Textile Research Journal, 68(9), 680-686. doi:10.1177/004051759806800909
  6. Fan, J., & Hunter, L. (1998b). A worsted fabric expert system: Part II: An artificial neural network model for predicting the properties of worsted fabrics. Textile Research Journal, 68(10), 763-771. doi:10.1177/004051759806801010
  7. Gong, R. H., & Chen, Y. (1999). Predicting the performance of fabrics in garment manufacturing with artificial neural networks. Textile Research Journal, 69(7), 477-482. doi:10.1177/004051759906900703
  8. Harada, T., & Saito, M. (1988). Inspection system of hand HIPS. The Textile Machinery Society of Japan, 45(5), 305-310.
  9. Hu, J., Xin, B., & Yan, H. (2002a). Measuring and modeling 3D wrinkles in fabrics. Textile research journal, 72(10), 863-869. doi.org/10.1177/004051750207201003
  10. Hu, J., Xin, B., & Yan, H. J. (2002b). Classifying fleece fabric appearance by extended morphological fractal analysis. Textile Research Journal, 72(10), 879-884. doi:10.1177/004051750207201005
  11. Kawabata, S. (1980). The standardization and analysis of hand evaluation (2nd ed.) : The hand evaluation and standardization committee. Osaka: The Textile Machinery Society of Japan.
  12. Kang, T. J., Kim, S. C., Sul, I. H., Youn, J. R., & Chung, K. (2005). Fabric surface roughness evaluation using wavelet-fractal method part I: wrinkle, smoothness and seam pucker. Textile Research Journal, 75(11), 751-760. doi:10.1177/0040517505058855
  13. Kim, S. A., & Gotoh, D. (2005). The characteristics and application of 3D CAD. Journal of the Korean Society of Clothing Industry, 7(2), 131-134.
  14. Kim, S. C., & Kang, T. J. (2005). Fabric surface roughness evaluation using wavelet-fractal method part II: Fabric pilling evaluation. Textile Research Journal, 75(11), 761-770. doi:10.1177/0040517505059209
  15. Kyohei, T., Toyonori, N., Hiroyuki, K., Satoshi, A., Junki, K., & Kiyohiro, S. (2015). Influence of physical properties of wool fabrics on the poor appearance of jacket. Journal of Textile Engineering, 61(2), 17-21. doi: 10.4188/jte.61.17
  16. Lindberg, J., Behre, B., & Dahlberg, B. (1961). Part III: Shearing and buckling of various commercial fabrics. Textile Research Journal, 31(2), 99-122. https://doi.org/10.1177/004051756103100203
  17. Ly, N. G., & De Boos, A. G. (1990). Application of the FAST system to the manufacture of fabrics and garments. English International Wool Textile Research. Society, 370-379.
  18. Mahar, T. J., Dhingra, R. C., & Postle, R. (1989). Fabric mechanical and physical properties relevant to clothing manufacture part I: fabric overfeed, formability, shear and hygral expansion during tailoring. International Journal of Clothing Science & Technology, 1(1), 12-20. doi:org/10.1108/eb002941
  19. Niwa, M., Inoue, M., & Kawabata, S. (2001). Objective evaluation of the handle of blankets. Textile Research Journal, 71(8), 701-710. doi: 10.1177/004051750107100809
  20. Park, C. K., & Kang, T. J. (1999a). Objective evaluation of seam pucker using artificial intelligence. Part I : Geometric modeling of seam pucker. Textile Research Journal, 69(10), 735-742. doi: 10.1177/004051759906901006
  21. Park, C. K., & Kang, T. J. (1999b). Objective evaluation of seam pucker using artificial intelligence. Part II : Method of evaluating seam pucker. Textile Research Journal, 69(11), 835-845. doi: 10.1177/004051759906901107
  22. Park, C. K., & Kang, T. J. (1999c). Objective evaluation of seam pucker using artificial intelligence. Part II : Using the objective evaluation method to analyze the effects of sewing parameters on seam pucker. Textile Research Journal, 69(12), 919-924. doi:10.1177/004051759906901206
  23. Pavlinic, D. Z., Gersak, J., Demsar, J., & Bratko, I. (2006). Predicting seam appearance quality. Textile Research Journal, 76(3), 235-242. doi: 10.1177/0040517506061533
  24. Postle, R., & Dhingra, R. C. (1989). Measuring and interpreting lowstress fabric mechanical and surface properties Part III: Optimization of fabric properties for men's suiting materials. Textile Research Journal, 59(8), 448-459. doi:10.1177/004051758905900803
  25. Shishoo, R. L. (1989). Fabric properties and making up processes. Textile Asia, 20(2), 66-73.
  26. Shishoo, R., & Choroszy, M. (1990). Fabric tailorability. Textile Asia, 2(12), 64-71.