DOI QR코드

DOI QR Code

Context-Aware Modeling with User Demand in an Internet of Things Environment

사물 인터넷 환경에서 사용자 요구를 포함한 상황 인지 모델

  • Received : 2017.08.14
  • Accepted : 2017.10.16
  • Published : 2017.11.15

Abstract

As Internet of Things devices become pervasive, services improve to better assess the context and to alert other users to deal with emergencies. Such services use Internet of Things devices to detect the context around the user and promptly notify public institutions, hospitals or other parental users in emergencies. Most of these systems analyze an event when the value of the device is unchanged for a period of time or if it detects an abnormal value. However, just monitoring sensor values makes it difficult to accurately understand the context surrounding a user. Also if the device is inactive, it can not identify the context or provide services again. However, understanding the user requirements, services provided through other devices, information sent to other users lets, appropriate actions be taken. This paper, proposes a device search method and system based on a context-aware model that includes user demands. The proposed system analyzes the user's context and demands by using data collected from the internet of things devices. If user devices are inactive, they can recognize other devices by searching for other devices and providing services to users again. Through the proposed method, the user-centric services are provided. This method also analyzes and responds to requirements in various emergencies.

사물 인터넷 기기가 일반화됨에 따라 사용자의 상황을 파악하고 다른 사용자에게 알림을 주어 위급 상황에 대처하기 위한 서비스가 증가하고 있다. 이와 같은 시스템은 대부분 기기의 값이 일정 기간 이상 변하지 않거나 이상치가 발견되면 이벤트로 판단하고 분석한다. 그러나 기기가 비활동 상태라면 상황을 파악하거나 다시 서비스를 제공할 수 없다. 이 때 만약 사용자의 요구를 파악하고 주변의 다른 기기들을 통해 서비스를 제공하거나 다른 사용자에게 상황 정보를 알린다면 적절한 조치를 취할 수 있다. 본 논문에서는 사용자의 요구를 포함한 상황 인지 모델과 이를 반영한 기기 탐색 시스템을 제안한다. 시스템은 수집한 데이터를 기반으로 사용자의 상황과 요구를 분석한다. 만약 사용자 기기가 비활동 상태일 때는 다른 기기를 탐색함으로써 상황을 인지하고 나아가 사용자에게 다시 서비스를 제공할 수 있다. 제안하는 방법을 통해 사용자 중심의 서비스 제공하고 여러 응급 상황에서 필요한 요소들을 분석, 대처한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. D. Gil, A. Ferrandez, H. Mora-Mora and J. Peral, "Internet of things: A review of surveys based on context aware intelligent services," Sensors, Vol. 16, No. 7, pp. 1-23, 2016. https://doi.org/10.1109/JSEN.2016.2616227
  2. M. Chae, Y. Kim, S. Kim, S. Kim and S. Jung, "Study on Building Smart Home Testbed for Collecting Daily Health Condition based on Internet of Things," KIISE Transactions on Computing Practices, Vol. 23, No. 5, pp. 284-292, May, 2017. https://doi.org/10.5626/KTCP.2017.23.5.284
  3. L. Reinfurt, U. Breitenbucher, M. Falkenthal, F. Leymann, A. Riegg, "Internet of things patterns," Proc. of the 21st European Conference on Pattern Languages of Programs, p. 5, 2016.
  4. D. Macedo, L.A. Guedes, and I. Silva, "A dependability evaluation for Internet of Things incorporating redundancy aspects," Proc. of International Conference Networking, Sensing and Control, pp. 417-422, 2014.
  5. Y. Wang, I. R. Chen, J. Cho, A. Swami, Y. C. Lu, C. T. Lu, et al., "Catrust: context-aware trust management for service-oriented ad hoc networks," IEEE Transactions on Services Computing, No. 99, 2016.
  6. G. Castelli, M. Mamei, and A. Rosi, "Extracting high-level information from location data: the w4 diary example," Mobile Networks and Applications, Vol. 14, No. 1, pp. 107-119, 2009. https://doi.org/10.1007/s11036-008-0104-y
  7. B. Ur, Blase, M. Park Yong Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard, et al., "Trigger-action programming in the wild: An analysis of 200,000 ifttt recipes," Proc. of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 3227-3231, 2016.
  8. M. Khan, S. Din, S. Jabbar, M. Gohar and H. Ghayvat, "Context-aware low power intelligent SmartHome based on the Internet of things," Computers & Electrical Engineering, Vol. 52, pp. 208-222, 2016. https://doi.org/10.1016/j.compeleceng.2016.04.014
  9. M. Ryu, J. Kim, and J. Yun, "Integrated semantics service platform for the Internet of Things: A case study of a smart office," Sensors, Vol. 15, No. 1, pp. 2137-2160, 2015. https://doi.org/10.3390/s150102137
  10. C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, "Context aware computing for the internet of things: A survey," IEEE Communications Surveys & Tutorials, Vol. 16, No. 1, pp. 414-454, 2014. https://doi.org/10.1109/SURV.2013.042313.00197
  11. D. Le-Phuoc, H.N.M. Quoc, J.X. Parreira, and M. Hauswirth, "The linked sensor middleware-connecting the real world and the semantic web," Proc. of the Semantic Web Challenge, pp. 1-22, 2011.
  12. S. Nath, J. Liu, and F. Zhao, "Sensormap for wide-area sensor webs," Computer, Vol. 40, No. 7, pp. 90-93, 2007. https://doi.org/10.1109/MC.2007.250
  13. Xively. [Online]. Available: https://www.xively.com/ (assessed Jul., 24, 2017).
  14. I. Silva, R. Leandro, D. Macedo, and L.A. Guedes, "A dependability evaluation tool for the Internet of Things," Computers & Electrical Engineering, Vol. 39, No. 7, pp. 2005-2018, 2013. https://doi.org/10.1016/j.compeleceng.2013.04.021
  15. S. Ryu, S. Kim, "Alternative Device Browsing System in the Internet of Things Environment," Proc. of the Fall Conference of the Korea Multimedia Society, pp. 307-309, 2016.
  16. A. Deshpande, C. Guestrin, S.R. Hellerstein, J.M. Hellerstein and W. Hong, "Model-driven data acquisition in sensor networks," Proc. of the Thirtieth international conference on Very large data bases, Vol. 30, pp. 588-599, 2004.
  17. R. Reza, M. Tomitsch, K. Wac, and A. M. Tjoa, "UbiqLog: a generic mobile phone-based life-log framework," Personal and ubiquitous computing, Vol. 17, No. 4, pp. 621-637, 2013. https://doi.org/10.1007/s00779-012-0511-8