DOI QR코드

DOI QR Code

이동하중을 받는 사장교의 거동비교

Comparative study on the cable stayed bridge under moving load state

  • Sung, Ikhyun (Department of Civil Engineering, Hanseo University)
  • 투고 : 2017.05.28
  • 심사 : 2017.06.30
  • 발행 : 2017.06.30

초록

사장교는 특수목적으로 장 경간을 갖는 교량이다. 긴 경간으로 인하여 차량의 이동하중에 대한 동적응답이 매우 특별하다. 거동역시도 비선형을 갖고 있어 설계에 어려움이 많은 형식이다. 연구에서 다양한 차량하중을 고려하여 사장교의 응답을 구하고 장 경간 교량의 이동하중에 대한 거동을 파악한다. 특히, 한 방향과 양방향에 대한 하중이 속도를 가지고 이동할 때 교량의 부재에 대한 거동은 케이블의 유연성에 기인하는 것으로 나타났다. 차량하중의 영향은 케이블의 진동과 함께 수직변형을 증폭하는 경향을 나타내므로 케이블과 바닥판의 동적거동을 포함한 분석이 보다 효과적임을 알 수 있다.

Cable-stayed bridges are bridges with long spans for special purposes. Due to the long span, the dynamic response of the vehicle to the moving load is very special. The behavior also has nonlinear, which makes it difficult to design. In this study, the responses of cable - stayed bridges are considered considering various vehicle loads and the behavior of long - span bridges under moving loads is investigated. Especially, when the loads for one direction and for both directions move with speed, the behavior of the bridges is found to be due to the flexibility of the cable. It can be seen that the analysis including the dynamic behavior of the cable and the top plate is more effective because the influence of the vehicle load tends to amplify the vertical deformation together with the vibration of the cable.

키워드

참고문헌

  1. Ermopoulos, J. C., Vlahinos, A. S., & Wang, Y. C. (1992). Stability analysis of cable-stayed bridges. Computers & structures, 44(5), 1083-1089. https://doi.org/10.1016/0045-7949(92)90331-S
  2. Adeli, H., Weaver, W., & Gere, J. M. (1978). Algorithms for nonlinear structural dynamics. Journal of the Structural Division, 104(2), 263-280.
  3. Klaus-J 鑥rgen.Bathe. (1982). Finite element procedures in engineering analysis. Prentice-Hall.
  4. Bathe, K. J., & Gracewski, S. (1981). On nonlinear dynamic analysis using substructuring and mode superposition. Computers & Structures, 13(5-6), 699-707. https://doi.org/10.1016/0045-7949(81)90032-8
  5. Clough, R. W., & Wilson, E. L. (1979). Dynamic analysis of large structural systems with local nonlinearities. Computer Methods in Applied Mechanics and Engineering, 17, 107-129.
  6. Ernst, M. J. (1965). The E-Modulus of Cables Considering the Deflection. Der Bauigenieur, 40(2), 52-55.
  7. Fleming, J. F., Zenk, J. D., & Wethyavivorn, B. (1983). Static and dynamic analysis of cable-stayed bridges. Department of Civil Engineering, School of Engineering, University of Pittsburgh.
  8. Rajaraman, A. (1980). Nonlinear analysis of cable-stayed bridges. IABSE Proceedings Mem AIPC IVBH Abhandlungen, 80(P-37/80).
  9. Irvine, H. M., & Irvine, M. (1992). Cable structures (No. Sirsi) i9780486671277).
  10. Khalifa, M. A. (1993). Parametric study of cable-stayed bridge response due to traffic-induced vibration. Computers & structures, 47(2), 321-339. https://doi.org/10.1016/0045-7949(93)90383-O
  11. HIKAMI, Y. (1986). Rain vibrations of cables in cable-stayed bridge. Wind Engineers, JAWE, 1986(27), 17-28. https://doi.org/10.5359/jawe.1986.17