DOI QR코드

DOI QR Code

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi (Faculty of Mechanical Engineering, University of Kashan) ;
  • Arani, A. Ghorbanpour (Faculty of Mechanical Engineering, University of Kashan) ;
  • Sheikhzadeh, Gh. (Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2017.03.16
  • Accepted : 2017.05.31
  • Published : 2017.07.20

Abstract

This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

Keywords

References

  1. Alibeigloo, A. and Kani, A.M. (2010), "3D free vibration analysis of laminated cylindrical shell integrated piezoelectric layers using the differential quadrature method", Appl. Math. Model., 34(12), 4123-4137. https://doi.org/10.1016/j.apm.2010.04.010
  2. Amabili, M. (2008), Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York, NY, USA.
  3. Amabili, M. (2011), "Nonlinear vibrations of laminated circular cylindrical shells: Comparison of different shell theories", Compos. Struct., 94(1), 207-220. https://doi.org/10.1016/j.compstruct.2011.07.001
  4. Armenakas, A.E., Gazis, D.C. and Herrmann, G. (1969), Free vibrations of circular cylindrical shells, Pergamon Press, Oxford, UK.
  5. Bhimaraddi, A. (1984), "A higher order theory for free vibration analysis of circular cylindrical shells", Int. J. Solids Struct., 20(7), 623-630. https://doi.org/10.1016/0020-7683(84)90019-2
  6. De Bellis, M.L., Ruta, G.C. and Elishakoff, I. (2010), "Influence of a Wieghardt foundation on the dynamic stability of a fluid conveying pipe", Arch. Appl. Mech., 80(7), 785-801. https://doi.org/10.1007/s00419-009-0305-2
  7. Duc, N.D. and Than, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations", Aero Sci. Tech., 40, 115-127. https://doi.org/10.1016/j.ast.2014.11.005
  8. Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound Vib., 329(10), 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020
  9. Ghorbanpour Arani, A., Golabi, S., Loghman, A. and Daneshi, H. (2007), "Investigating elastic stability of cylindrical shell with an elastic core under axial compression by energy method", J. Mech. Sci. Tech., 21(7), 693-698. https://doi.org/10.1007/BF02916347
  10. Ghorbanpour Arani, A., Mohammadimehr, M., Arefmanesh, A. and Ghasemi, A. (2010), "Transverse vibration of short carbon nanotubes using cylindrical shell and beam models", Proceed Inst. Mech. Eng., Part C, J. Mech. Eng. Sci., 224(3), 745-756. https://doi.org/10.1243/09544062JMES1659
  11. Ghorbanpour Arani, A., Maghamikia, Sh., Mohammadimehr, M. and Arefmanesh, A. (2011a), "Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods", J. Mech. Sci. Tech, 25(3), 809-820. https://doi.org/10.1007/s12206-011-0127-3
  12. Ghorbanpour Arani, A., Loghman, A., Abdollahitaheri, A.and Atabakhshian, V. (2011b), "Electrothermomechanical behavior of a radially polarized rotating functionally graded piezoelectric cylinder", J. Mech. Mat. Struct., 6(6), 869-882. https://doi.org/10.2140/jomms.2011.6.869
  13. Ghorbanpour Arani, A., Shajari, A.R., Amir, S. and Loghman, A. (2012), "Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid", Physica E, 45(3), 109-121. https://doi.org/10.1016/j.physe.2012.07.017
  14. Ghorbanpour Arani, A., Kolahchi, R. and Khoddami Maraghi, Z. (2013a), "Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory", Appl. Math. Model, 37(14), 7685-7707. https://doi.org/10.1016/j.apm.2013.03.020
  15. Ghorbanpour Arani, A., Haghshenas, A., Amir, S., Mozdianfard, M.R. and Latifi, M. (2013b), "Electro-thermo-mechanical response of thick-walled piezoelectric cylinder reinforced by boron-nitride nanotubes", Strength Mat., 45(1), 102-115. https://doi.org/10.1007/s11223-013-9437-2
  16. Ghorbanpour Arani, A., Haghparast, E., Khoddami Maraghi, Z. and Amir, S. (2015a), "Static stress analysis of carbon nano-tube reinforced composite (CNTRC), cylinder under nonaxisymmetric thermo-mechanical loads and uniform electromagnetic fields", Compos. Part B, Eng., 68, 136-145. https://doi.org/10.1016/j.compositesb.2014.08.036
  17. Ghorbanpour Arani, A., Kolahchi, R. and Zarei, M.Sh. (2015b), "Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory", Compos. Struct., 132, 506-526. https://doi.org/10.1016/j.compstruct.2015.05.065
  18. Ghorbanpour Arani, A., Abdollahian, M. and Kolahchi, R. (2015c), "Nonlinear vibration of embedded smart composite microtube conveying fluid based on modified couple stress theory", Polym. Compos., 36(7), 1314-1324. https://doi.org/10.1002/pc.23036
  19. Jalili, N. (2010), Piezoelectric-Based Vibration Control from Macro to Micro/Nano Scale Systems, Springer Science, New York, NY, USA.
  20. Kadoli, R. and Ganesan, N. (2003), "Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid", Compos. Struct., 60(1), 19-32. https://doi.org/10.1016/S0263-8223(02)00313-6
  21. Khalili, S.M.R., Davar, A. and Malekzadeh Fard, K. (2012), "Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory", Int. J. Mech. Sci., 56(1), 1-25. https://doi.org/10.1016/j.ijmecsci.2011.11.002
  22. Kumar, A., Chakrabarti, A. and Bhargava, P. (2013a), "Finite element analysis of laminated composite and sandwich shells using higher order zigzag theory", Compos. Struct., 106, 270-281. https://doi.org/10.1016/j.compstruct.2013.06.021
  23. Kumar, A., Chakrabarti, A. and Bhargava, P. (2013b), "Vibration of laminated composites and sandwich shells based on higher order zigzag theory", Eng. Struct., 56, 880-888. https://doi.org/10.1016/j.engstruct.2013.06.014
  24. Kumar, A., Chakrabarti, A. and Bhargava, P. (2013c), "Vibration of laminated composite skew hypar shells using higher order theory", Thin-Wall. Struct., 63, 82-90. https://doi.org/10.1016/j.tws.2012.09.007
  25. Kumar, A., Chakrabarti, A. and Bhargava, P. (2014), "Accurate dynamic response of laminated composites and sandwich shells using higher order zigzag theory", Thin-Wall. Struct., 77, 174-186. https://doi.org/10.1016/j.tws.2013.09.026
  26. Kumar, A., Chakrabarti, A. and Bhargava, P. (2015), "Vibration analysis of laminated composite skew cylindrical shells using higher order shear deformation theory", J. Vib. Control, 21(4), 725-735. https://doi.org/10.1177/1077546313492555
  27. Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
  28. Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Methods Appl. Mech. Engrg., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001
  29. Liu, Ch., Ke, L.L., Wang, Y.Sh., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031
  30. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  31. Mahdi, M. and Katebi, H. (2015), "Numerical modeling of uplift resistance of buried pipelines in sand, reinforced with geogrid and innovative grid-anchor system", Geomech. Eng., Int. J., 9(6), 757-774. https://doi.org/10.12989/gae.2015.9.6.757
  32. Mantari, J.L. and Guedes Soares, C. (2014), "Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells", Compos. Part B, 56, 126-136. https://doi.org/10.1016/j.compositesb.2013.07.027
  33. Mohammadi, F. and Sedaghati, R. (2012), "Vibration analysis and design optimization of viscoelastic sandwich cylindrical shell", J. Sound Vib., 331(12), 2729-2752. https://doi.org/10.1016/j.jsv.2012.02.004
  34. Patel, S.N., Datta, P.K. and Sheikh, A.H. (2006), "Buckling and dynamic instability analysis of stiffened shell panels", Thin-Wall. Struct., 44(3), 321-333. https://doi.org/10.1016/j.tws.2006.03.004
  35. Rabani Bidgoli, M., Karimi, M.S. and Ghorbanpour Arani, A. (2016), "Viscous fluid induced vibration and instability of FGCNT-reinforced cylindrical shells integrated with piezoelectric layers", Steel Compos. Struct., Int. J., 19(3), 713-733.
  36. Seo, Y.S., Jeong, W.B., Yoo, W.S. and Jeong, H.K. (2015), "Frequency response analysis of cylindrical shells conveying fluid using finite element method", J. Mech. Sci. Tech., 19(2), 625-633. https://doi.org/10.1007/BF02916184
  37. Sheng, G.G. and Wang, X. (2010), "Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells", Appl. Math. Model, 34(9), 2630-2643. https://doi.org/10.1016/j.apm.2009.11.024
  38. Srivastava, A. and Sivakumar Babu, G.L. (2011), "Deflection and buckling of buried flexible pipe-soil system in a spatially variable soil profile", Geomech. Eng., Int. J., 3(3), 169-188. https://doi.org/10.12989/gae.2011.3.3.169
  39. Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model., 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008
  40. Tzou, H.S. and Gadre, M. (1989), "Theoretical analysis of a multilayered thin shell coupled with piezoelectric shell actuators for distributed vibration controls", J. Sound Vib., 132(3), 433-450. https://doi.org/10.1016/0022-460X(89)90637-8
  41. Uematsu, Y., Tsujiguchi, N. and Yamada, M. (2001), "Mechanism of ovalling vibrations of cylindrical shells in cross flow", Wind Struct., Int. J., 4(2), 85-100. https://doi.org/10.12989/was.2001.4.2.085
  42. Wang, L. (2009), "A further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid", Int. J. Non-Linear Mech., 44(1), 115-121. https://doi.org/10.1016/j.ijnonlinmec.2008.08.010
  43. Yang, Ch., Jin, G., Liu, Zh., Wang, X. and Miao, X. (2015), "Vibration and damping analysis of thick sandwich cylindrical shells with a viscoelastic core under arbitrary boundary conditions", Int. J. Mech. Sci., 92, 162-177. https://doi.org/10.1016/j.ijmecsci.2014.12.003
  44. Zhang, J.F., Ge, Y.J. and Zhao, L. (2013), "Influence of latitude wind pressure distribution on the responses of hyperbolodial cooling tower shell", Wind Struct., Int. J., 16(6), 579-601. https://doi.org/10.12989/was.2013.16.6.579
  45. Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014a), "Large deflection geometrically nonlinear analysis of carbon nanotubereinforced functionally graded cylindrical panels", Comput. Methods Appl. Mech. Engrg., 273, 1-18. https://doi.org/10.1016/j.cma.2014.01.024
  46. Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014b), "Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels", Compos. Struct., 111, 205-212. https://doi.org/10.1016/j.compstruct.2013.12.035