References
- Alibeigloo, A. and Kani, A.M. (2010), "3D free vibration analysis of laminated cylindrical shell integrated piezoelectric layers using the differential quadrature method", Appl. Math. Model., 34(12), 4123-4137. https://doi.org/10.1016/j.apm.2010.04.010
- Amabili, M. (2008), Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York, NY, USA.
- Amabili, M. (2011), "Nonlinear vibrations of laminated circular cylindrical shells: Comparison of different shell theories", Compos. Struct., 94(1), 207-220. https://doi.org/10.1016/j.compstruct.2011.07.001
- Armenakas, A.E., Gazis, D.C. and Herrmann, G. (1969), Free vibrations of circular cylindrical shells, Pergamon Press, Oxford, UK.
- Bhimaraddi, A. (1984), "A higher order theory for free vibration analysis of circular cylindrical shells", Int. J. Solids Struct., 20(7), 623-630. https://doi.org/10.1016/0020-7683(84)90019-2
- De Bellis, M.L., Ruta, G.C. and Elishakoff, I. (2010), "Influence of a Wieghardt foundation on the dynamic stability of a fluid conveying pipe", Arch. Appl. Mech., 80(7), 785-801. https://doi.org/10.1007/s00419-009-0305-2
- Duc, N.D. and Than, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations", Aero Sci. Tech., 40, 115-127. https://doi.org/10.1016/j.ast.2014.11.005
- Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound Vib., 329(10), 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020
- Ghorbanpour Arani, A., Golabi, S., Loghman, A. and Daneshi, H. (2007), "Investigating elastic stability of cylindrical shell with an elastic core under axial compression by energy method", J. Mech. Sci. Tech., 21(7), 693-698. https://doi.org/10.1007/BF02916347
- Ghorbanpour Arani, A., Mohammadimehr, M., Arefmanesh, A. and Ghasemi, A. (2010), "Transverse vibration of short carbon nanotubes using cylindrical shell and beam models", Proceed Inst. Mech. Eng., Part C, J. Mech. Eng. Sci., 224(3), 745-756. https://doi.org/10.1243/09544062JMES1659
- Ghorbanpour Arani, A., Maghamikia, Sh., Mohammadimehr, M. and Arefmanesh, A. (2011a), "Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods", J. Mech. Sci. Tech, 25(3), 809-820. https://doi.org/10.1007/s12206-011-0127-3
- Ghorbanpour Arani, A., Loghman, A., Abdollahitaheri, A.and Atabakhshian, V. (2011b), "Electrothermomechanical behavior of a radially polarized rotating functionally graded piezoelectric cylinder", J. Mech. Mat. Struct., 6(6), 869-882. https://doi.org/10.2140/jomms.2011.6.869
- Ghorbanpour Arani, A., Shajari, A.R., Amir, S. and Loghman, A. (2012), "Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid", Physica E, 45(3), 109-121. https://doi.org/10.1016/j.physe.2012.07.017
- Ghorbanpour Arani, A., Kolahchi, R. and Khoddami Maraghi, Z. (2013a), "Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory", Appl. Math. Model, 37(14), 7685-7707. https://doi.org/10.1016/j.apm.2013.03.020
- Ghorbanpour Arani, A., Haghshenas, A., Amir, S., Mozdianfard, M.R. and Latifi, M. (2013b), "Electro-thermo-mechanical response of thick-walled piezoelectric cylinder reinforced by boron-nitride nanotubes", Strength Mat., 45(1), 102-115. https://doi.org/10.1007/s11223-013-9437-2
- Ghorbanpour Arani, A., Haghparast, E., Khoddami Maraghi, Z. and Amir, S. (2015a), "Static stress analysis of carbon nano-tube reinforced composite (CNTRC), cylinder under nonaxisymmetric thermo-mechanical loads and uniform electromagnetic fields", Compos. Part B, Eng., 68, 136-145. https://doi.org/10.1016/j.compositesb.2014.08.036
- Ghorbanpour Arani, A., Kolahchi, R. and Zarei, M.Sh. (2015b), "Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory", Compos. Struct., 132, 506-526. https://doi.org/10.1016/j.compstruct.2015.05.065
- Ghorbanpour Arani, A., Abdollahian, M. and Kolahchi, R. (2015c), "Nonlinear vibration of embedded smart composite microtube conveying fluid based on modified couple stress theory", Polym. Compos., 36(7), 1314-1324. https://doi.org/10.1002/pc.23036
- Jalili, N. (2010), Piezoelectric-Based Vibration Control from Macro to Micro/Nano Scale Systems, Springer Science, New York, NY, USA.
- Kadoli, R. and Ganesan, N. (2003), "Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid", Compos. Struct., 60(1), 19-32. https://doi.org/10.1016/S0263-8223(02)00313-6
- Khalili, S.M.R., Davar, A. and Malekzadeh Fard, K. (2012), "Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory", Int. J. Mech. Sci., 56(1), 1-25. https://doi.org/10.1016/j.ijmecsci.2011.11.002
- Kumar, A., Chakrabarti, A. and Bhargava, P. (2013a), "Finite element analysis of laminated composite and sandwich shells using higher order zigzag theory", Compos. Struct., 106, 270-281. https://doi.org/10.1016/j.compstruct.2013.06.021
- Kumar, A., Chakrabarti, A. and Bhargava, P. (2013b), "Vibration of laminated composites and sandwich shells based on higher order zigzag theory", Eng. Struct., 56, 880-888. https://doi.org/10.1016/j.engstruct.2013.06.014
- Kumar, A., Chakrabarti, A. and Bhargava, P. (2013c), "Vibration of laminated composite skew hypar shells using higher order theory", Thin-Wall. Struct., 63, 82-90. https://doi.org/10.1016/j.tws.2012.09.007
- Kumar, A., Chakrabarti, A. and Bhargava, P. (2014), "Accurate dynamic response of laminated composites and sandwich shells using higher order zigzag theory", Thin-Wall. Struct., 77, 174-186. https://doi.org/10.1016/j.tws.2013.09.026
- Kumar, A., Chakrabarti, A. and Bhargava, P. (2015), "Vibration analysis of laminated composite skew cylindrical shells using higher order shear deformation theory", J. Vib. Control, 21(4), 725-735. https://doi.org/10.1177/1077546313492555
- Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
- Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Methods Appl. Mech. Engrg., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001
- Liu, Ch., Ke, L.L., Wang, Y.Sh., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
- Mahdi, M. and Katebi, H. (2015), "Numerical modeling of uplift resistance of buried pipelines in sand, reinforced with geogrid and innovative grid-anchor system", Geomech. Eng., Int. J., 9(6), 757-774. https://doi.org/10.12989/gae.2015.9.6.757
- Mantari, J.L. and Guedes Soares, C. (2014), "Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells", Compos. Part B, 56, 126-136. https://doi.org/10.1016/j.compositesb.2013.07.027
- Mohammadi, F. and Sedaghati, R. (2012), "Vibration analysis and design optimization of viscoelastic sandwich cylindrical shell", J. Sound Vib., 331(12), 2729-2752. https://doi.org/10.1016/j.jsv.2012.02.004
- Patel, S.N., Datta, P.K. and Sheikh, A.H. (2006), "Buckling and dynamic instability analysis of stiffened shell panels", Thin-Wall. Struct., 44(3), 321-333. https://doi.org/10.1016/j.tws.2006.03.004
- Rabani Bidgoli, M., Karimi, M.S. and Ghorbanpour Arani, A. (2016), "Viscous fluid induced vibration and instability of FGCNT-reinforced cylindrical shells integrated with piezoelectric layers", Steel Compos. Struct., Int. J., 19(3), 713-733.
- Seo, Y.S., Jeong, W.B., Yoo, W.S. and Jeong, H.K. (2015), "Frequency response analysis of cylindrical shells conveying fluid using finite element method", J. Mech. Sci. Tech., 19(2), 625-633. https://doi.org/10.1007/BF02916184
- Sheng, G.G. and Wang, X. (2010), "Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells", Appl. Math. Model, 34(9), 2630-2643. https://doi.org/10.1016/j.apm.2009.11.024
- Srivastava, A. and Sivakumar Babu, G.L. (2011), "Deflection and buckling of buried flexible pipe-soil system in a spatially variable soil profile", Geomech. Eng., Int. J., 3(3), 169-188. https://doi.org/10.12989/gae.2011.3.3.169
- Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model., 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008
- Tzou, H.S. and Gadre, M. (1989), "Theoretical analysis of a multilayered thin shell coupled with piezoelectric shell actuators for distributed vibration controls", J. Sound Vib., 132(3), 433-450. https://doi.org/10.1016/0022-460X(89)90637-8
- Uematsu, Y., Tsujiguchi, N. and Yamada, M. (2001), "Mechanism of ovalling vibrations of cylindrical shells in cross flow", Wind Struct., Int. J., 4(2), 85-100. https://doi.org/10.12989/was.2001.4.2.085
- Wang, L. (2009), "A further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid", Int. J. Non-Linear Mech., 44(1), 115-121. https://doi.org/10.1016/j.ijnonlinmec.2008.08.010
- Yang, Ch., Jin, G., Liu, Zh., Wang, X. and Miao, X. (2015), "Vibration and damping analysis of thick sandwich cylindrical shells with a viscoelastic core under arbitrary boundary conditions", Int. J. Mech. Sci., 92, 162-177. https://doi.org/10.1016/j.ijmecsci.2014.12.003
- Zhang, J.F., Ge, Y.J. and Zhao, L. (2013), "Influence of latitude wind pressure distribution on the responses of hyperbolodial cooling tower shell", Wind Struct., Int. J., 16(6), 579-601. https://doi.org/10.12989/was.2013.16.6.579
- Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014a), "Large deflection geometrically nonlinear analysis of carbon nanotubereinforced functionally graded cylindrical panels", Comput. Methods Appl. Mech. Engrg., 273, 1-18. https://doi.org/10.1016/j.cma.2014.01.024
- Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014b), "Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels", Compos. Struct., 111, 205-212. https://doi.org/10.1016/j.compstruct.2013.12.035