References
- Abbas, B.A.H. (1984), "Vibrations of timoshenko beams with elastically restrained ends", J. Sound Vib., 97(4), 541-548. https://doi.org/10.1016/0022-460X(84)90508-X
- Abu-Hilal, M. (2003), "Forced vibration of Euler-Bernoulli beams by means of dynamic green functions", J. Sound Vib., 267(2), 191-207. https://doi.org/10.1016/S0022-460X(03)00178-0
- Akgoz, B. and Civalek, O. (2014), "A new trigonometric beam model for buckling of strain gradient microbeams", Int. J. Mech. Sci., 81, 88-94. https://doi.org/10.1016/j.ijmecsci.2014.02.013
- Akgoz, B. and Civalek, O. (2015), "A novel microstructuredependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003
- Anton, H. and Rorres, C. (2005), Elementary linear algebra with applications, (9th Edition), John wiley & Sons.
- Augarde, C.E. (1998), "Generation of shape functions for straight beam elements", Comput. Struct., 68(6), 555-560. https://doi.org/10.1016/S0045-7949(98)00071-6
- Bishop, J.E. (2014), "A displacement‐based finite element formulation for general polyhedra using harmonic shape functions", Int. J. Numer. Method. Eng., 97(1), 1-31. https://doi.org/10.1002/nme.4562
- Carrera, E., Pagani, A. and Petrolo, M. (2015), "Refined 1D finite elements for the analysis of secondary primary, and complete civil engineering structures", J. Struct. Eng., 141(4), 04014123. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001076
- Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
- Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on twoopposite edges", Adv. Eng. Softw., 41(4), 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002
- Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), Concepts and Applications of Finite Element Analysis, (3rd Edition), John Wiley & Sons, Singapore.
- Dukic, E.P., Jelenic, G. and Gacesa, M. (2014), "Configurationdependent interpolation in higher-order 2D beam finite elements," Finite Element Anal. Des., 78, 47-61. https://doi.org/10.1016/j.finel.2013.10.001
- Greif, R. and Mittendorf, S.C. (1976), "Structural vibrations and fourier series", J. Sound Vib., 48(1), 113-122. https://doi.org/10.1016/0022-460X(76)90375-8
- Gunda, J.B. and Ganguli, R. (2008), "New rational interpolation functions for finite element analysis of rotating beams", Int. J. Mech. Sci., 50(3), 578-588. https://doi.org/10.1016/j.ijmecsci.2007.07.014
- Hashemi, S.M. and Richard, M.J. (1999), "A new Dynamic Finite Element (DFE) formulation for lateral free vibrations of Euler-Bernoulli spinning beams using trigonometric shape functions", J. Sound Vib., 220(4), 578-588.
- Hughes, T.J.R. (1987), Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, New Jersey.
- Inaudi, J.A. (2013), "Adaptive frequency-dependent shape functions for accurate estimation of modal frequencies", J. Eng. Mech., 139(12),1844-1855. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000609
- Kazakov, K.S. (2012), "Elastodynamic infinite elements based on modified bessel shape functions, applicable in the finite element method", Struct. Eng. Mech., 42(3), 353-362. https://doi.org/10.12989/sem.2012.42.3.353
- Kim, H.K. and Kim, M.S. (2001), "Vibration of beams with generally restrained boundary conditions using Fourier series", J. Sound Vib., 245(5), 771-784. https://doi.org/10.1006/jsvi.2001.3615
- Kim, H.G. (2014), "A study on the development of shape functions of polyhedral finite elements", J. Comput. Struct. Eng. Inst. Korea, 27(3), 183-189. https://doi.org/10.7734/COSEIK.2014.27.3.183
- Li, T., Qi, Z., Ma, X. and Chen, W. (2015), "Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem", Struct. Eng. Mech., 54(3), 393-417. https://doi.org/10.12989/sem.2015.54.3.393
- Liu, G.R. and Wu, T.Y. (2001), "Vibration analysis of beams using the generalized differential quadrature rule and domain decomposition", J. Sound Vib., 246(3), 461-481. https://doi.org/10.1006/jsvi.2001.3667
- Macbai, J.C. and Genin, J. (1973), "Natural frequencies of a beam considering support characteristics", J. Sound Vib., 27(2), 197-206. https://doi.org/10.1016/0022-460X(73)90061-8
- Milsted, M.G. and Hutchinson, J.R. (1974), "Use of trigonometric terms in the finite element method with application to vibrating membranes", J. Sound Vib., 32(3), 327-346. https://doi.org/10.1016/S0022-460X(74)80089-1
- Rao, C.K. and Mirza, S. (1989), "A note on vibrations of generally restrained beams", J. Sound Vib., 130(3), 453-465. https://doi.org/10.1016/0022-460X(89)90069-2
- Rao, S.S. (2011), The Finite Element Method in Engineering, (5th Edition), Elsevier, Boston.
- Reddy, J.N. (2006), An Introduction to the Finite Element Method, (3rd Edition), McGraw-Hill, Singapore.
- Wang, J.T.S. and Lin, C.C. (1996), "Dynamic analysis of generally supported beams using Fourier series", J. Sound Vib., 196(3), 285-293. https://doi.org/10.1006/jsvi.1996.0484
- Wang, X. and Yuan, Z. (2017), "Discrete singular convolution and taylor series expansion method for free vibration analysis of beams and rectangular plates with free boundaries", Int. J. Mech. Sci., 122, 184-191. https://doi.org/10.1016/j.ijmecsci.2017.01.023