DOI QR코드

DOI QR Code

Development and Performance Evaluation of Hydroxyl Radical Generator using Electron Emission Type High Voltage and Low Current Discharger

전자방사식 고압 저전력 방전을 이용한 OH radical 발생기의 개발과 성능 평가

  • Received : 2017.04.14
  • Accepted : 2017.06.09
  • Published : 2017.06.30

Abstract

In this study, we developed an electron-emission OH radical generator for waste water treatment. The stability of the circuitry was ensured by implementing stable pulse waves with a MOSFET and reducing the momentary current rise. The OH radical generator uses a high-voltage and low-current discharger. The performance of the device was evaluated experimentally, which showed that it is possible to produce a stable and uniform pulse waveform for the drain current of the power MOSFET, which is connected to the input side of an AC multiplying converter through negative feedback circuitry with CR-snubber architecture. It was also possible to reduce the excitation current of the converter and improve the stability of the oscillation circuit. In addition, the generator can generate hydroxyl radicals stably. The bactericidal activities were also evaluated, and the germicidal power for E. coli, S. aureus, and S. flexneriwas improved by 99.9% or more after 60 minutes.

본 연구는 MOSFET을 이용하여 안정적인 구형파를 구현함과 동시에 순간적인 전류의 상승을 최대한 줄여 전체 회로의 안정성 이 확보된 폐수처리용 전자방사식 OH radical generator를 개발하고자 하였다. 이와 같은 문제를 해결하고 안정성이 확보된 전자방사식 고압 저전력 방전을 이용한 폐수처리용 전자방사식 OH radical generator를 개발하고 그 성능을 평가하고자 하였다. 실험은 2016년 11월부터 2017년 3월까지 실시하였다. 그 결과 AC 체배 변환기의 입력 단에 연결되는 Power MOSFET의 drain 전류는 CR-스너버 구조의 부궤환(negative feedback) 회로를 통해 안정적이고 일정한 펄스 파형을 제공할 수 있었으며 AC 체배 변환기의 여기 전류(excitation current) 감소 및 발진 회로의 안정성을 상승시킬 수 있었다. 또한 이와 같은 회로를 갖는 전자방사식 OH radical generator에서 OH radical을 안정정적으로 발생시킬 수 있었다. 또한 살균능을 평가한 결과, E. coli, S. aureus와 S. flexneri는 60분 후 최대 99.9%이상의 살균력을 보였다. 본 연구 결과를 기반으로, MOSFET을 이용하여 안정적인 구형파를 구현함과 동시에 순간적인 전류의 상승을 최대한 줄여 전체 회로의 안정성이 확보된 살균능이 우수한 폐수처리용 전자방사식 OH radical generator를 개발하였다.

Keywords

References

  1. B. Veriansyah, J. D. Kim, "Supercritical water oxidation for the destruction of toxic organic wastewaters: A review," J. Environ. Sci., Vol. 19, p p. 513-522, 2007. https://doi.org/10.1016/S1001-0742(07)60086-2
  2. L. Balest, G. Mascolo, C. Di Iaconi, A. Lopez, "Removal of endocrine disrupter compounds from municipal wastewater by an innovative biological technology," Water Sci. Technol., Vol. 58, pp. 953-956, 2008. https://doi.org/10.2166/wst.2008.711
  3. E . R. Bandala, M. A. Pelaez, A. J. Garcia-Lopez, M. de J. Salgado, G. Moeller, "Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes," Che m. Eng. Process. Process Intensif, Vol. 47, pp. 169-176, 2008. https://doi.org/10.1016/j.cep.2007.02.010
  4. A . Y. C., Lin, T. H. Yu, C. F. Lin, "Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan," Chemosphere., Vol. 74, pp. 131-141, 2008. DOI: https://doi.org/10.1016/j.chemosphere.2008.08.027
  5. M. Matosic, S. Terzic, H. Korajlija Jakopovic, I. Mijatovic, M. Ahel, "Treatment of a landfill leachate containing compounds of pharmaceutical origin," Water Sci. Technol., Vol, 58, pp. 597-602, 2008. DOI: https://doi.org/10.2166/wst.2008.700
  6. M. Petrovic, S. Gonzalez, D. Barcelo, "Analysis and removal of emerging contaminants in wastewater and drinking water," TrAC - Trends Anal. Chem., Vol, 22, pp. 685-696, 2003. DOI: https://doi.org/10.1016/S0165-9936(03)01105-1
  7. S. G. Schrank, H. J. Jose, R. F. P. M. Moreira, H. F. Schroder, "Elucidation of the behavior of tannery wastewater under advanced oxidation conditions," Chemosphere., Vol, 56, pp. 411-423, 2004. DOI: https://doi.org/10.1016/j.chemosphere.2004.04.012
  8. H. S. Jung, K. S. Hyun, J. W. Choi, and S. J. Jeon, "Effects of ozonation on color and COD removal in landfill leachat," J. Kor. Soc. Wat. Sci. Tech., Vol. 17, pp. 113-118, 2009.
  9. D. Kim, and Y. Park, "Degradation of Phenol in Water Using Circulation Dielectric Barrier Plasma Reactors," J. Environ. Health. Sci., Vol. 38, pp. 251-260, 2012. DOI: https://doi.org/10.5668/jehs.2012.38.3.251
  10. W. H. Glaze, J. W. Kang, D. H. Chapin, "The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation," Ozone Sci. Eng., Vol. 9, pp. 335-352, 1987. DOI: https://doi.org/10.1080/01919518708552148
  11. Y. S. Park, and D. S. Kim, "Effects of Operating Parameters on Electrochemical Degradation of Rhodamine B and Formation of OH Radical Using BDD Electrode," J. Environ. Sci., Vol. 19, pp. 1143-1152, 2010. DOI: https://doi.org/10.5322/jes.2010.19.9.1143
  12. W. H. Glaze, J. Kangt, "Advanced Oxidation Processes. Test of a Kinetic Model for the Oxidation of Organic Compounds with Ozone and Hydrogen Peroxide in a Semibatch Reactor," Ind. Eng. Chem. Res., Vol. 28, pp. 1580-1587, 1989. DOI: https://doi.org/10.1021/ie00095a002
  13. C. Wu, X.Liu, D. Wei, J. Fan, L. Wang, "Photosonochemical degradation of phenol in water," Water Res., Vol. 35, pp. 3927-3933, 2001. DOI: https://doi.org/10.1016/S0043-1354(01)00133-6
  14. Y. Son, M. Lim, J. Song, and J. Khim, "Liquid Height Effect on Sonochemical Reactions in a 35 kHz Sonoreactor," Jpn. J. Appl. Phys., Vol .48, p. 07GM16, 2009.