DOI QR코드

DOI QR Code

Review of Failure Mechanisms on the Semiconductor Devices under Electromagnetic Pulses

고출력전자기파에 의한 반도체부품의 고장메커니즘 고찰

  • Kim, Dongshin (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute) ;
  • Koo, Yong-Sung (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute) ;
  • Kim, Ju-Hee (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute) ;
  • Kang, Soyeon (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute) ;
  • Oh, Wonwook (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute) ;
  • Chan, Sung-Il (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute)
  • 김동신 (전자부품연구원 융복합전자소재연구센터) ;
  • 구용성 (전자부품연구원 융복합전자소재연구센터) ;
  • 김주희 (전자부품연구원 융복합전자소재연구센터) ;
  • 강소연 (전자부품연구원 융복합전자소재연구센터) ;
  • 오원욱 (전자부품연구원 융복합전자소재연구센터) ;
  • 천성일 (전자부품연구원 융복합전자소재연구센터)
  • Received : 2016.11.28
  • Accepted : 2017.06.09
  • Published : 2017.06.30

Abstract

This review investigates the basic principle of physical interactions and failure mechanisms introduced in the materials and inner parts of semiconducting components under electromagnetic pulses (EMPs). The transfer process of EMPs at the semiconducting component level can be explained based on three layer structures (air, dielectric, and conductor layers). The theoretically absorbed energy can be predicted by the complex reflection coefficient. The main failure mechanisms of semiconductor components are also described based on the Joule heating energy generated by the coupling between materials and the applied EMPs. Breakdown of the P-N junction, burnout of the circuit pattern in the semiconductor chip, and damage to connecting wires between the lead frame and semiconducting chips can result from dielectric heating and eddy current loss due to electric and magnetic fields. To summarize, the EMPs transferred to the semiconductor components interact with the chip material in a semiconductor, and dipolar polarization and ionic conduction happen at the same time. Destruction of the P-N junction can result from excessive reverse voltage. Further EMP research at the semiconducting component level is needed to improve the reliability and susceptibility of electric and electronic systems.

본 논문에서는 고출력 전자기파 (Electromagnetic pulses, EMP) 영향에 의해 발생하는 반도체 부품의 물리적 상호작용에 대한 원리와 고장 발생 메커니즘의 연구를 위해 선행된 연구 내용을 고찰하였다. 반도체 부품에서의 전자기파 전이 과정은 3층 (공기/유전체/도체) 구조로 설명할 수 있으며, 복소반사계수에 의하여 이론적으로 흡수되는 에너지를 예상할 수 있다. 반도체 부품에 전달된 과도한 고출력 전자기파로 인한 반도체 부품의 주요 고장 원인은 전자기파 커플링에 의한 부품 소재의 줄 열에너지의 발생이다. 전기장에 의한 유전가열과 자기장에 의한 맴돌이손실에 의해 반도체 칩의 P-N 접합 파괴, 회로패턴의 burn-out과 리드 프레임과 칩을 연결하는 와이어의 손상 등이 발생한다. 즉, 반도체 부품에 전달된 전자기파는 반도체 내부 물질과 상호작용을 하며, 쌍극자분극과 이온 전도도 현상이 동시에 발생하여, 칩 내부의 P-N 접합 부분에 과도한 역전압이 형성되어 P-N 접합 파괴를 유발한다. 향후 고 신뢰성을 요구하는 전기전자시스템에 대한 EMP 내성을 향상하기 위한 반도체 부품 수준의 연구가 필요하다.

Keywords

References

  1. D. V. Giri, F. M. Tesche, "Classification of International Electromagnetic Environments(IEME)," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, no. 3, 2004. DOI: https://doi.org/10.1109/TEMC.2004.831819
  2. Ianoz, Michel, "A Comparison between HEMP and HPEM parameter. Effects and mitigation methods", Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility, 2008. Asia-Pacific Symposium on. IEEE, 2008. DOI: https://doi.org/10.1109/apemc.2008.4559865
  3. J. S. Choi, D. W. Im, Electromagnetic pulse generation and application, Physics high technology, pp. 36-41, 2006.
  4. MK Bumgardner, MA Dreger, JC Giles, GF Ross, "EMP simulators for missiles and airplanes," No. EG/GAL-1026, EG AND G INC ALBUQUERQUE NM ALBUQUERQUE DIV, 1974.
  5. U. S. Navy, "Final Environmental Impact Statement for the Proposed Operation of the Navy Electromagnetic Pulse Radiation Environment Simulator for Ships in the Chesapeake Bay and Atlantic Ocean," 1988.
  6. Jin-Ho Yang, Sang-Wook Nam, "Electromagnetic Pulse Coupling into Naval Warship and Protective Measures," The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 25, no. 4, pp. 426-433, 2014. DOI: https://doi.org/10.5515/KJKIEES.2014.25.4.426
  7. Waedeuk Kim, "A study on the Improvement Methodology for Protection Design Based on EMP Shielding Effectiveness Test of Reinforced Concrete Facilities," Inhha university in partial fulfilment of the requirements for the degree of master of engineering, 2016.
  8. Preis. D, "High-Speed Pulse Propagation in Integrated Circuits," TUFTS UNIV MEDFORD MA DEPT OF ELECTRICAL ENGINEERING, 1986.
  9. AC Metaxas, Roger J Meredith, "Industrial Microwave Heating'', London,(UK), 1983.
  10. CA Crane, ML Pantoya, BL Weeks, "Spatial observation and quantification of microwave heating in materials," Review of Scientific Instruments, Vol. 84, no. 8, pp. 084705, 2013. DOI: https://doi.org/10.1063/1.4818139
  11. JH Yee, WJ Orvis, LC Martin, "Theoretical Modeling of EMP Effects in Semiconductor Junction Devices", Lawrence Livermore National Laboratory, California, USA, 1983.
  12. Jeni Anto, Raj C Thiagarajan, "Coupled Electromagnetic and Heat Transfer Simulations for RF Applicator Design for Efficient Heating of Materials," simulation, Vol. 1, no. 5, 2012.
  13. Zhiwei Peng, Jiann-Yang Hwang and Matthew Andriese, "Absorber Impedance Matching in Microwave Heating," IOP science, Vol. 5, no. 7, 2012.
  14. Jiping Cheng, Rustum Roy, Dinesh Agrawal, "Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites," Journal of Materials Science Letters, Vol. 20, no. 17, pp. 1561-1563, 2001. DOI: https://doi.org/10.1023/A:1017900214477
  15. Jiping Cheng, Rustum Roy, Dinesh Agrawal, "Radically different effects on materials by separated microwave electric and magnetic fields," Material Research Innovations, Vol. 5, no. 3-4, pp. 170-177, 2002. https://doi.org/10.1007/s10019-002-8642-6
  16. Rustum Roy, Ramesh Peelamedu, Craig Grimes, Jiping Cheng, Dinesh Agrawal, "Major phase transformations and magnetic property changes caused by electromagnetic fields at microwave frequencies," Journal of materials research, Vol. 17, no. 12, pp. 3008-3011, 2002. https://doi.org/10.1557/JMR.2002.0437
  17. Lev Davidovich Landau, JS Bell, MJ Kearsley, LP Pitaevskii, EM Lifshitz, JB Sykes, Electrodynamics of continuous media, Vol. 8, elsevier, 2013.
  18. Pedro M Aguiar, Jacques-Francois Jacquinot, Dimitris Sakellariou, "Experimental and numerical examination of eddy (Foucault) currents in rotating micro-coils: Generation of heat and its impact on sample temperature," Journal of Magnetic Resonance, Vol. 200, no. 1, pp. 6-14, 2009. https://doi.org/10.1016/j.jmr.2009.05.010
  19. Desgardin G Cherradi, J Provost, B Raveau, "Electric and magnetic field contributions to the microwave sintering of ceramics," Electroceramics IV, Vol. 2, pp. 1219-12224, 1994.
  20. Ziping Cao, Zhanjie Wang, Noboru Yoshikawa, Shoji Taniguchi, "Microwave heating origination and rapid crystallization of PZT thin films in separated H field," Journal of Physics D: Applied Physics, Vol. 41, no. 9, pp. 092003, 2008. DOI: https://doi.org/10.1088/0022-3727/41/9/092003
  21. Yi Zhang, Ya Zhai, "Magnetic Induction Heating of Nanosized Ferrite Particles," INTECH Open Access Publisher, 2011.
  22. RE Haimbaugh, "Theory of Heating by Induction," Practical Induction Heat Treating, pp. 5-11, 2001.
  23. Satoshi Horikoshi, Takuya Sumi, Nick Serpone, "Unusual effect of the magnetic field component of the microwave radiation on aqueous electrolyte solutions," Journal of Microwave Power and Electromagnetic Energy, Vol. 46, no. 4, pp. 215-228, 2012. DOI: https://doi.org/10.1080/08327823.2012.11689838
  24. Kurt H Jurgen Buschow, Handbook of magnetic materials. Vol. 15, Elsevier, 2003.
  25. Wallace B Smith, Duane H Pontius, PAUL P Budenstein, "Second breakdown and damage in junction devices," IEEE Transactions on Electron Devices, Vol. 20, no. 8, pp. 731-744, 1973. DOI: https://doi.org/10.1109/T-ED.1973.17735
  26. Zhiwei Peng, Jiann-Yang Hwang, Chong-Lyuck Park, Byoung-Gon Kim, Gerald Onyedika, "Numerical analysis of heat transfer characteristics in microwave heating of magnetic dielectrics," Metallurgical and Materials Transactions A, Vol. 43, no. 3, pp. 1070-1078, 2012. DOI: https://doi.org/10.1007/s11661-011-1014-3
  27. Zhiwei Peng, Jiann-Yang Hwang, Joe Mouris, Ron Hutcheon, Xiaodi Huang, "Microwave penetration depth in materials with non-zero magnetic susceptibility," ISIJ international, Vol. 50, no. 11, pp. 1590-1596, 2010. DOI: https://doi.org/10.2355/isijinternational.50.1590
  28. Wen Chen, Bernhard Gutmann, C Oliver Kappe, "Characterization of Microwave-Induced Electric Discharge Phenomena in Metal-Solvent Mixtures," Chemistry Open, Vol. 1, no. 1, pp. 39-48, 2012. DOI: https://doi.org/10.1002/open.201100013
  29. Yuna Kim, Jongwon Lee, Jin Soo Choi, Doo-Soo Kim, Jong-Gwan Yook, "Transient Thermal Analysis of MOSFET in Metallic Enclosure Illuminated by Electromagnetic Pulse', European Electromagnetics Symposium, 2016.
  30. Joo-II Hong, Sun-Mook Hwang, Cheong-Ho Hwang, Shin-Woo Park, Chang-Su Huh, "Destruction Effect of Semiconductors by Impact of Artificial Microwave," proc. of The Korean Institute of Electrical Engineers. pp. 1609-1610, 2006.
  31. Joo-Il Hong, Sun-Mook Hwang, Chang-Su Huh, "Breakdown and Destruction Characteristics of the CMOS IC by High Power Microwave," The transactions of The Korean Institute of Electrical Engineers, Vol. 56, no. 7, pp. 1282-1287, 2007.