DOI QR코드

DOI QR Code

CRISPR/CAS9 as a Powerful Tool for Crop Improvement

  • Song, Jae-Young (Department of Crop Science, Chungbuk National University) ;
  • Nino, Marjohn (Department of Crop Science, Chungbuk National University) ;
  • Nogoy, Franz Marielle (Department of Crop Science, Chungbuk National University) ;
  • Jung, Yu-Jin (Department of Horticulture, Hankyong National University) ;
  • Kang, Kwon-Kyoo (Department of Horticulture, Hankyong National University) ;
  • Cho, Yong-Gu (Department of Crop Science, Chungbuk National University)
  • Received : 2017.06.04
  • Accepted : 2017.06.21
  • Published : 2017.06.30

Abstract

Implementation of crop improvement programs relies on genetic diversity. To overcome the limited occurrence of natural mutations, researchers and breeders applied diverse methods, ranging from conventional crossing to classical bio-technologies. Earlier generations of knockout and gain-of-function technologies often result in incomplete gene disruption or random insertions of transgenes into plant genomes. The newly developed editing tool, CRISPR/Cas9 system, not only provides a powerful platform to efficiently modify target traits, but also broadens the scope and prospects of genome editing. Customized Cas9/guide RNA (gRNA) systems suitable for efficient genomic modification of mammalian cells or plants have been reported. Following successful demonstration of this technology in mammalian cells, CRISPR/Cas9 was successfully adapted in plants, and accumulating evidence of its feasibility has been reported in model plants and major crops. Recently, a modified version of CRISPR/Cas9 with added novel functions has been developed that enables programmable direct irreversible conversion of a target DNA base. In this review, we summarized the milestone applications of CRISPR/Cas9 in plants with a focus on major crops. We also present the implications of an improved version of this technology in the current plant breeding programs.

Keywords

References

  1. Abdallah NA, Prakash CS, McHughen AG. (2015) Genome editing for crop improvement: Challenges and opportunities. GM Crops & Food. 6:183-205 https://doi.org/10.1080/21645698.2015.1129937
  2. Altpeter F, Kannan B, Jung JH, Oz TM, Karan R, Merotto A. (2017) Genetic Improvement of Sugarcane by Targeted Lossor Gain of Function Mutations using TALEN or CRISPR-Cas9. Proc. of the Plant and Animal Genome Conference (PAG XXV). San Diego, CA, USA. W699
  3. Asano K, Hirano K, Ueguchi-Tanaka M, Angeles-Shim RB, Komura T, Satoh H, Kitano H, Matsuoka M, Ashikari M. (2009) Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Mol. Genet. Genomics 281:223-231 https://doi.org/10.1007/s00438-008-0406-6
  4. Bibikova M, Golic M, Golic KG, Carroll D. (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169-1175
  5. Bortesi L, Fischer R. (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33:41-52 https://doi.org/10.1016/j.biotechadv.2014.12.006
  6. Brooks C, Nekrasov V, Lippman ZB, Eck JV. (2014) Efficient gene editing in tomato in the first generation using the clustered regularly insterspaced short palindromic repeats/CRISPR-Associated9 system. Plant Physiology. 166:1292-1297 https://doi.org/10.1104/pp.114.247577
  7. Cai L, Fisher AL, Hunag H, Xie Z. (2016) CRISPR-mediated genome editing and human diseases. Genes & Diseases 3: 244-251 https://doi.org/10.1016/j.gendis.2016.07.003
  8. Cermak T, Baltes NJ, Cegan R, Zhang Y, Voytas DF. (2015) High-frequency. Precise modification of the tomato genome. Genome Biology DOI 10.1186/s13059-015-0796-9
  9. Char SN, Neelakandan AK, Nahamoun H, Frame B, Main M, Soalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B. (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high frequency targeted mutagenesis in maize. Plant Biotechnology Journal 15: 257-268 doi: 10.1111/pbi.12611
  10. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-823 https://doi.org/10.1126/science.1231143
  11. Cram D, Kulkarni M, Rozwadowski K, Sharpe AG, Kagale S. (2017) Wheat CRISPR: A Web-Based Optimized sgRNA Designer for CRISPR-Cas9-Mediated Genome Editing in Wheat. Proc. of the Plant and Animal Genome Conference (PAG XXV). San Diego, CA, USA. P0821
  12. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. 41(7):4336-43. doi: 10.1093/nar/gkt135
  13. Fabre L, Le Hello S, Roux C, Jeanjean SI, Weill FX. (2014) CRISPR Is an Optimal Target for the Design of Specific PCR Assays for Salmonella enterica Serotypes Typhi and Paratyphi A. PLoS Negl Trop Dis. 8(1): e2671. 10.1371/journal.pntd.0002671
  14. Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F. (2015) Efficient targeted genome modification in maize using CRISPR/Cas9 system. Journal of Genetics and Genomics 43: 37-43
  15. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK. (2013) Efficient genome editing in plants using CRISPR/Cas system. Cell Research 23:1229-1232 doi:10.1038/cr.2013.114
  16. Giddings LV, Potrykus I, Ammann K, Fedoroff NV. (2012) Confronting the Gordian knot. Nat.Biotechnol. 30, 208-209.doi:10.1038/nbt.2145
  17. Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O'Connor-Giles KM. (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196(4):961-71. doi: 10.1534/genetics.113.160713
  18. Hai T, Teng F, Guo R, Li W, Zhou Q. (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system Cell Res. 24(3): 372-375 doi: 10.1038/cr.2014.11
  19. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z,Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Bucker ES, Qian Q, Zhang QF, Li J, Han B. (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42:961-967 https://doi.org/10.1038/ng.695
  20. Hwang WY, Fu Yanfang, Reyon Deepak, Maeder ML, Kaini P, Sander JD, Joung K, Peterson RT, Yeh JYJ. (2013) Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System. PLOS One 8:e68708. doi.org/10.1371/journal.pone.0068708
  21. Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A of TALE nuclease genes, Cathomen T, Goncalves MA. (2013) Differently integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucliec Acids Res. 1;41(5):e63. doi: 10.1093/nar/gks1446
  22. Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C. (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 47:834-838 https://doi.org/10.1038/ng.3337
  23. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the heightregulating gene GAI/RGA/RHT/D8. Plant Cell 13:999-1010 https://doi.org/10.1105/tpc.13.5.999
  24. Jain M. (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front. Plant Sci. 6:375. Doi: 10.3389/fpls.20115.00375
  25. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31: 233-239 https://doi.org/10.1038/nbt.2508
  26. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-21 https://doi.org/10.1126/science.1225829
  27. Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N. (2016) The CRISPR/Cas Genome-EditingTool: Application in Improment of Crops. Frontiers in Plant Science 7:506.doi: 10.3389/fpls.2016.00506
  28. Kim YG, Cha J, Chandrasegaran S. (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156-60 https://doi.org/10.1073/pnas.93.3.1156
  29. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420-426 https://doi.org/10.1038/nature17946
  30. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. (2014) Genomewide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nature Biotechnol. 32:677-683 https://doi.org/10.1038/nbt.2916
  31. Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Juang L, Ward RT, Clifton E, Falco SC, Cigan AM. (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiology 169: 960-970 https://doi.org/10.1104/pp.15.00783
  32. Lowder L, Malzahn A, Qi Y. (2016) Rapid Evolution of Manifold CRISPR Systems for Plant Genome Editing. Front. Plant Sci. 7:1683. doi: 10.3389/fpls.2016.01683
  33. Lu Y, Zhu JK. (2016) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9. Molecular Plant 10: 523-525
  34. Luo M, Wu X, Morbitzer R, Lahaye T, Ayliffe M. (2017) Genome Editing in Cereals. Proc. of the Plant and Animal Genome Conference (PAG XXV). San Diego, CA, USA. W264
  35. Ma Y, Zhang X, Shen B, Lu Y, Chen W, Ma J, Bai L, Huang X, Zhang L. (2014) Generating rats with conditional alleles using CRISPR/Cas9. Cell Research 24:122-125. doi:10.1038/cr.2013.157
  36. Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM. (2013) RNA-guided human genome engineering via Cas9. Science 339,823-826 https://doi.org/10.1126/science.1232033
  37. Mashiko D, Young SA, Muto M, Kato H, Nozawa K, Ogawa M, Noda T, Kim YJ, Satouh Y, Fujihara Y, Ikawa M. (2014) Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes. Dev Growth Differ. 56(1): 122-129 doi: 10.1111/dgd.12113
  38. Nakashima K, Ito Y, Yamaguchi-Shinozaki K. (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149:88-95 https://doi.org/10.1104/pp.108.129791
  39. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156(4):836-843 doi: 10.1016/j.cell.2014.01.027
  40. Puchta H and Fauser F. (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J. 78: 727-741 https://doi.org/10.1111/tpj.12338
  41. Rouet P, Smih F, Jasin M. (1994) Introduction of doublestrand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol. 14:8096-8106 https://doi.org/10.1128/MCB.14.12.8096
  42. Sander JD, Joung JK. (2014) CRISPR-Cas syetms for editing, regulating and targeting genomes. Nature Biotechnology 32: 347-355 doi:10.1038/nbt.2842
  43. Shan Q, Wang Q, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL Gao C. (2013) Targeted genome modification of crop plants using a CRISPR/Cas system. Nature Biotechnology 31(8):686-688 https://doi.org/10.1038/nbt.2650
  44. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62-67 https://doi.org/10.1038/nature13011
  45. Sun Y. (2017) CRISPR/Cas9-Mediated Gene Targeting for Crop Improvement. Proc. of the Plant and Animal Genome Conference (PAG XXV). San Diego, CA, USA. W731
  46. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM. (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and Guide RNA. Plant Physiology 169:931-945 https://doi.org/10.1104/pp.15.00793
  47. Voytas DF, Gao C. (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 12:e1001877. doi: 10.1371/journal.pbio.1001877
  48. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL. (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology doi:10.1038/nbt.2969
  49. Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X. (2015) Efficient targeted mjtageneis in potato by the CRISPR/Cas9 system Plant Cell Rep 34:1473-1476 DOI 10.1007/s00299-015-1816-7
  50. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K. (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factpr gene OsERF922. PLOS One 11 (4): e0154027. doi:10.1371/journal.pone.0154027
  51. Wolfe SA, Nekludova L, Pabo CO. (2000) DNA Recognition by Cys2His2Zinc finger proteins. Annu. Rev, Biphys. Biomol. Struct. 3:183-212
  52. Yang D, Xu J, Zhu T, Fan J, Lai L, Zhang J, Chen YE. (2014) Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J Mol Cell Biol. 6(1):97-99 https://doi.org/10.1093/jmcb/mjt047
  53. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK. (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal 12:797-807 https://doi.org/10.1111/pbi.12200
  54. Zhu J, Song N, Sun S, Yang W, Zhao H, Song W, Lai J. (2015) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. Journal of Genetics and Genomics 43: 25-36