DOI QR코드

DOI QR Code

Biological Differences between Hanwoo longissimus dorsi and semimembranosus Muscles in Collagen Synthesis of Fibroblasts

  • Received : 2017.01.16
  • Accepted : 2017.05.13
  • Published : 2017.06.30

Abstract

Variations in physical toughness between muscles and animals are a function of growth rate and extend of collagen type I and III. The current study was designed to investigate the ability of growth rate, collagen concentration, collagen synthesizing and degrading genes on two different fibroblast cells derived from Hanwoo m. longissimus dorsi (LD) and semimembranosus (SM) muscles. Fibroblast cell survival time was determined for understanding about the characteristics of proliferation rate between the two fibroblasts. We examined the collagen concentration and protein expression of collagen type I and III between the two fibroblasts. The mRNA expression of collagen synthesis and collagen degrading genes to elucidate the molecular mechanisms on toughness and tenderness through collagen production between the two fibroblast cells. From our results the growth rate, collagen content and protein expression of collagen type I and III were significantly higher in SM than LD muscle fibroblast. The mRNA expressions of collagen synthesized genes were increased whereas the collagen degrading genes were decreased in SM than LD muscle. Results from confocal microscopical investigation showed increased fluorescence of collagen type I and III appearing stronger in SM than LD muscle fibroblast. These results implied that the locomotion muscle had higher fibroblast growth rate, leads to produce more collagen, and cause tougher than positional muscle. This in vitro study mirrored that background toughness of various muscles in live animal is likely associated with fibroblast growth pattern, collagen synthesis and its gene expression.

Keywords

References

  1. Alikhani, Z., Alikhani, M., Boyd, C. M., Nagao, K., Trackman, P. C., and Graves, D. T. (2005) Advanced glycation end products enhance expression of pro-apoptotic genes and stimulate fibroblast apoptosis through cytoplasmic and mitochondrial pathways. J. Biol. Chem. 280, 12087-12095. https://doi.org/10.1074/jbc.M406313200
  2. Archile-Contreras, A. C., Mandell, I. B., and Purslow, P. P. (2010) Disparity of dietary effects on collagen characteristics and toughness between two beef muscles. Meat Sci. 86, 491-497. https://doi.org/10.1016/j.meatsci.2010.05.041
  3. Blanco, M. R. and Alonso, C. R. (2010) Collagen types I and III in bovine muscles: Influence of age and breed. J Muscle Foods 21, 417-423. https://doi.org/10.1111/j.1745-4573.2009.00191.x
  4. Calkins, C. R. and Sullivan, G. (2007) Ranking of beef muscles for tenderness. Universidad de Nebraska. 1-5.
  5. Chapman, H. A., Riese, R. J., and Shi, G. P. (1997) Emerging roles for cysteine proteases in human biology. Annu. Rev. Physiol. 59, 63-88. https://doi.org/10.1146/annurev.physiol.59.1.63
  6. Chen, H. N., Wang, D. J., Ren, M. Y., Wang, Q. L., and Sui, S. J. (2012) TWEAK/Fn14 promotes the proliferation and collagen synthesis of rat cardiac fibroblasts via the NF-${\kappa}B$ pathway. Mol. Boil. Rep. 39, 8231-8241. https://doi.org/10.1007/s11033-012-1671-3
  7. Dubost, A., Micol, D., Meunier, B., Lethias, C., and Listrat, A. (2013) Relationships between structural characteristics of bovine intramuscular connective tissue assessed by image analysis and collagen and proteoglycan content. Meat Sci. 93, 378-386. https://doi.org/10.1016/j.meatsci.2012.09.020
  8. Enjalbert, B., Smith, D. A., Cornell, M. J., Alam, I., Nicholls, S., Brown, A. J., and Quinn, J. (2006) Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell. 17, 1018-1032. https://doi.org/10.1091/mbc.e05-06-0501
  9. Galli, A., Crabb, D.W., Ceni, E., Salzano, R., Mello, T., Svegliati-Baroni, G., Ridolfi, F., Trozzi, L., Surrenti, C., and Casini, A (2002) Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology 122, 1924-1940. https://doi.org/10.1053/gast.2002.33666
  10. Gonzalez, J. M., Johnson, D. D., Elzo, M. A., White, M. C., Stelzleni, A. M., and Johnson, S. E. (2014) Effect of Brahman genetic influence on collagen enzymatic crosslinking gene expression and meat tenderness. Anim. Biotechnol. 25, 165-178. https://doi.org/10.1080/10495398.2013.846862
  11. Jurie, C., Martin, J. F., Listrat, A., Jailler, R., Culioli, J., and Picard, B. (2005) Effects of age and breed of beef bulls on growth parameters, carcass and muscle characteristics. Animal Sci. 80, 257-263.
  12. Kagan, H. M. (2000) Intra-and extracellular enzymes of collagen biosynthesis as biological and chemical targets in the control of fibrosis. Acta Trop. 77, 147-152. https://doi.org/10.1016/S0001-706X(00)00128-5
  13. Kalayarasan, S., Sriram, N., and Sudhandiran, G. (2008) Diallyl sulfide attenuates bleomycin-induced pulmonary fibrosis: Critical role of iNOS, NF-${\kappa}B$, TNF-${\alpha}$ and IL-$1{\beta}$. Life Sci. 82, 1142-1153. https://doi.org/10.1016/j.lfs.2008.03.018
  14. Keira, S. M., Ferreira, L. M., Gragnani, A., Duarte, I. D. S., and Barbosa, J. (2004) Experimental model for collagen estimation in cell culture. Acta Cir. Bras. 19, 17-22. https://doi.org/10.1590/S0102-86502004000700005
  15. Kessler, E., Takahara, K., Biniaminov, L., Brusel, M., and Greenspan, D. S. (1996) Bone morphogenetic protein-1: The type I procollagen C-proteinase. Science 271, 360. https://doi.org/10.1126/science.271.5247.360
  16. Kim, S. G., Akaike, T., Sasagaw, T., Atomi, Y., and Kurosawa, H. (2002) Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct. Funct. 27, 139-144. https://doi.org/10.1247/csf.27.139
  17. Lindahl, G. E., Chambers, R. C., Papakrivopoulou, J., Dawson, S. J., Jacobsen, M. C., Bishop, J. E., and Laurent, G. J. (2002) Activation of fibroblast procollagen ${\alpha}1$ (I) transcription by mechanical strain is transforming growth factor-${\beta}$-dependent and involves increased binding of CCAAT-binding factor (CBF/NF-Y) at the proximal promoter. J. Biol. Chem. 277, 6153-6161. https://doi.org/10.1074/jbc.M108966200
  18. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-${\Delta}{\Delta}CT$ method. Methods. 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  19. Mun, J. H., Kim, Y. M., Kim, B. S., Kim, J. H., Kim, M. B., and Ko, H. C. (2014) Simvastatin inhibits transforming growth factor-${\beta}1$-induced expression of type I collagen, CTGF, and ${\alpha}$-SMA in keloid fibroblasts. Wound Repair Regen. 22, 125-133. https://doi.org/10.1111/wrr.12136
  20. Nakai, A., Satoh, M., Hirayoshi, K., and Nagata, K. (1992) Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum. J. Cell Biol. 117, 903-914. https://doi.org/10.1083/jcb.117.4.903
  21. Namboodiripad, P. A. (2014) Cystatin C: Its role in pathogenesis of OSMF. J. Oral. Biol. Craniofac. Res. 4, 42-46. https://doi.org/10.1016/j.jobcr.2014.02.004
  22. Peng, X., Mathai, S. K., Murray, L. A., Russell, T., Reilkoff, R., Chen, Q., Gulati, M., Elias, J.A., Bucala, R., Gan, Y., and Herzog, E. L. (2011) Local apoptosis promotes collagen production by monocyte-derived cells in transforming growth factor ${\beta}1$-induced lung fibrosis. Fibrogenesis Tissue Repair 4, 1. https://doi.org/10.1186/1755-1536-4-1
  23. Ruiz-Ortega, M., Ruperez, M., Esteban, V., Rodriguez-Vita, J., Sanchez-Lopez, E., Carvajal, G., and Egido, J. (2006) Angiotensin II: A key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol. Dial. Transplant. 21, 16-20. https://doi.org/10.1093/ndt/gfi265
  24. Sambasivarao, S. V. (2013) Identification of HIV inhibitors guided by free energy perturbation calculations. Curr. Pharm. Des. 18, 1199-1216.
  25. Shioshita, K., Miyazaki, M., Ozono, Y., Abe, K., Taura, K., Harada, T., Koji, T., Taguchi, T., and Kohno, S. (2000) Expression of heat shock proteins 47 and 70 in the peritoneum of patients on continuous ambulatory peritoneal dialysis. Kidney Int. 57, 619-631. https://doi.org/10.1046/j.1523-1755.2000.00883.x
  26. Stolowski, G. D., Baird, B. E., Miller, R. K., Savell, J. W., Sams, A. R., Taylor, J. F., Sanders, J. O., and Smith, S. B. (2006) Factors influencing the variation in tenderness of seven major beef muscles from three Angus and Brahman breed crosses. Meat Sci. 73, 475-483. https://doi.org/10.1016/j.meatsci.2006.01.006
  27. Sun, K., Wang, Q., and Huang, X. H. (2006) PPAR gamma inhibits growth of rat hepatic stellate cells and TGF beta-induced connective tissue growth factor expression1. Acta Pharmacologica Sin. 27, 715-723. https://doi.org/10.1111/j.1745-7254.2006.00299.x
  28. Taffin, A. and Pluvinet, R. (2006) Hydrolyzed collagen. Wellness Foods Europe 3, 14-18.
  29. Tatum, J. D. (2011) Animal age, physiological maturity, and associated effects on beef tenderness. Cattlemen's Beef Board and National Cattlemen's Beef Association.
  30. Uzel, M. I., Scott, I. C., Babakhanlou-Chase, H., Palamakumbura, A. H., Pappano, W. N., Hong, H. H., Greenspan, D. S. and Trackman, P. C. (2001) Multiple bone morphogenetic protein 1-related mammalian metalloproteinases process Prolysyl oxidase at the correct physiological site and control lysyl oxidase activation in mouse embryo fibroblast cultures. J. Biol. Chem. 276, 22537-22543. https://doi.org/10.1074/jbc.M102352200
  31. Verrecchia, F. and Mauviel, A. (2004) TGF-${\beta}$ and TNF-${\alpha}$: Antagonistic cytokines controlling type I collagen gene expression. Cell. Signalling. 16, 873-880. https://doi.org/10.1016/j.cellsig.2004.02.007
  32. Wang, X., Qian, Y., Jin, R., Wo, Y., Chen, J., Wang, C., and Wang, D. (2013) Effects of TRAP-1-like protein (TLP) gene on collagen synthesis induced by TGF-${\beta}$/Smad signaling in human dermal fibroblasts. PLoS One 8, e55899. https://doi.org/10.1371/journal.pone.0055899
  33. Ziegelhoffer-Mihalovicova, B., Briest, W., Baba, H. A., Rassler, B., and Zimmer, H. G. (2003) The expression of mRNA of cytokines and of extracellular matrix proteins in triiodothyronine-treated rat hearts. Mol. Cell. Biochem. 247, 61-68. https://doi.org/10.1023/A:1024153003249

Cited by

  1. -arginine via electrospinning technique: a novel nanomatrix to counter oxidative stress under crosstalk of co-cultured fibroblasts and satellite cells vol.24, pp.1, 2018, https://doi.org/10.1080/15419061.2018.1493107
  2. The Meat Quality Characteristics of Holstein Calves: The Story of Israeli ‘Dairy Beef’ vol.10, pp.10, 2017, https://doi.org/10.3390/foods10102308