DOI QR코드

DOI QR Code

Electrochemical Properties of Air-Formed Oxide Film-Covered AZ31 Mg Alloy in Aqueous Solutions Containing Various Anions

  • Fazal, Basit Raza (Surface Technology Division, Korea Institute of Materials Science) ;
  • Moon, Sungmo (Surface Technology Division, Korea Institute of Materials Science)
  • 투고 : 2017.04.17
  • 심사 : 2017.05.02
  • 발행 : 2017.06.30

초록

This research was conducted to investigate the electrochemical properties of the thin air-formed oxide film-covered AZ31 Mg alloy. Native air-formed oxide films on AZ31 Mg alloy samples were prepared by knife-abrading method and the changes in the electrochemical properties of the air-formed oxide film were investigated in seven different electrolytes containing the following anions $Cl^-$, $F^-$, $SO{_4}^{2-}$, $NO_3{^-}$, $CH_3COO^-$, $CO{_3}^{2-}$, and $PO{_4}^{3-}$. It was observed from open circuit potential (OCP) transients that the potential initially decreased before gradually increasing again in the solutions containing only $CO{_3}^{2-}$ or $PO{_4}^{3-}$ ions, indicating the dissolution or transformation of the native air-formed oxide film into new more protective surface films. The Nyquist plots obtained from electrochemical impedance spectroscopy (EIS) showed that there was growth of new surface films with immersion time on the air-formed oxide film-covered specimens in all the electrolyte. The least resistive surface films were formed in fluoride and sulphate baths whereas the most protective film was formed in phosphate bath. The potentiodynamic polarization curves illustrated that passive behaviour of AZ31 Mg alloy under anodic polarization appears only in $CO{_3}^{2-}$, or $PO{_4}^{3-}$ ions containing solutions and at more than $-0.4V_{Ag/AgCl}$ in $F^-$ ion containing solution.

키워드

참고문헌

  1. E. F. Emley, Principle of Magnesium Technology, Pergamon Press, London, UK, (1966).
  2. G.L. Song, A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater. 1 (1999) 11-33. https://doi.org/10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
  3. P. Amaravathy, C. Rose, S. Sathiyanarayanan and N. Rajendran, Evaluation of in vitro bioactivity and MG63oesteoblast cell response for TiO2 coated magnesium alloys, J. Sol-Gel Sci. Technol. 64 (2012) 694-703. https://doi.org/10.1007/s10971-012-2904-6
  4. X. Wang, S. Cai, G. Xu, X. Ye, M. Ren and K. Huang, Surface characteristics and corrosion resistance of sol gel derived CaO-P2O5-SrO-Na2O bioglass-ceramic coated Mg alloy by different heat-treatment temperatures, J. Sol-Gel Sci. Technol. 67 (2013) 629-638. https://doi.org/10.1007/s10971-013-3122-6
  5. T. S. N. Sankara Narayanan and M. Ho Lee, A simple strategy to modify the porous structure of plasma electrolytic oxidation coatings on magnesium, RSC Adv. 6 (2016) 16100-16114. https://doi.org/10.1039/C5RA20647B
  6. S. Moon and Y. Jeong, Generation mechanism of microdischarges during plasma electrolytic oxidation of Al in aqueous solutions, Corros. Sci. 51 (2009) 1506-1512. https://doi.org/10.1016/j.corsci.2008.10.039
  7. S. Moon, C. Yang, S. Na, Effects of hydroxide and silicate ions on the plasma electrolytic oxidation of AZ31 Mg alloy, J. Kor. Inst. Surf. Eng. 47 (2014) 147-154. https://doi.org/10.5695/JKISE.2014.47.4.147
  8. D. Kwon, S. Moon, Effects of NaOH concentration on the structure of PEO films formed on AZ31 Mg Alloy in PO4 3- and SiO3 2- containing aqueous solution, J. Kor. Inst. Surf. Eng. 49 (2016) 46-53. https://doi.org/10.5695/JKISE.2016.49.1.46
  9. S. Moon, D. Kwon, Anodic oxide films formed on AZ3 magnesium alloy by plasma electrolytic oxidation method in electrolytes containing various NaF concentrations, J. Kor. Inst. Surf. Eng. 49 (2016) 225-230. https://doi.org/10.5695/JKISE.2016.49.3.225
  10. S. Moon, Y. Kim, Anodic oxidation behavior of AZ31 magnesium alloy in aqueous electrolyte containing various Na2CO3 concentrations, J. Kor. Inst. Surf. Eng. 49 (2016) 331-338. https://doi.org/10.5695/JKISE.2016.49.4.331
  11. S. Moon, Corrosion behavior of PEO-treated AZ31 Mg alloy in chloride solution, J. Solid State Electrochem. 18 (2014) 341-346. https://doi.org/10.1007/s10008-013-2247-4
  12. J. N. Li, P. Cao, X. N. Zhang and Y. H. He, In vitro degradation and cell attachment of a PLGA coated biodegradable Mg-6Zn based alloys, J. Mater. Sci. 45 (2010) 6038-6045. https://doi.org/10.1007/s10853-010-4688-9
  13. A. Srinivasan, P. Ranjani and N. Rajendran, Electropolymerization of pyrrole over AZ31 Mg for biomedical applications, Electrochim. Acta, 88 (2013) 310-321. https://doi.org/10.1016/j.electacta.2012.10.087
  14. R. Xu, X. Yang, P. Li, K. W. Suen, G. Wu and P. K. Chu, Electrochemical properties and corrosion resistance of carbon ion implanted magnesium, Corros. Sci. 82 (2014) 173-179. https://doi.org/10.1016/j.corsci.2014.01.015
  15. H. M. Wong, Y. Zhao, V. Tam, S. Wu, P. K. Chu, Y. Zheng, M. K. Tsun, F. K. L. Leung, K. D. K. Luk, K. M. C. Cheung and K. W. K. Yeung, In vivo simulation of bone formation by aluminium and oxygen plasma surface-modified magnesium implants, Biomaterials. 34 (2013) 9863-9876. https://doi.org/10.1016/j.biomaterials.2013.08.052
  16. X. B. Chen, D. R. Nisbet, R. W. Li, P. N. Smith, T. B. Abbott, M. A. Easton, D. H. Zhang and N. Birbilis, Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coatings, Acta Biomater. 10 (2014) 1463-1474. https://doi.org/10.1016/j.actbio.2013.11.016
  17. X. B. Chen, N. Birbilis and T. B. Abbott, Review of corrosion resistant conversion coatings for magnesium and its alloys, Corrosion 67 (2011) 1-16.
  18. T. Yan, L. Tan, D. Xiong, X. Liu, B. Zhang and K. Yang, Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy, Mater. Sci. Eng., C, 30 (2010) 740-748. https://doi.org/10.1016/j.msec.2010.03.007
  19. S. Shadanbaz and G. J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: a review, Acta Biomater. 8 (2012) 20-30. https://doi.org/10.1016/j.actbio.2011.10.016
  20. J. E. Gray-Munro, C. Seguin and M. Strong, Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31, J. Biomed. Mater. Res., A, 91 (2009) 221-230.
  21. R.C. Bacon, J.J. Smith and F.M. Rugg, Electrolytic resistance in evaluating protective merit of coatings on metals, Ind. Eng. Chem. 40 (1948) 161-167. https://doi.org/10.1021/ie50457a041
  22. J.E.O. Mayne and D.J. Mills, The effect of the substrate on the electrical resistance of polymer films, J. Oil. Colour Chem. Assoc. 58 (1975) 155-159.
  23. S. Moon, A blade-abrading method for preparation of fresh surface of Mg, J. Kor. Inst. Surf. Eng. 48 (2015) 194-198. https://doi.org/10.5695/JKISE.2015.48.5.194
  24. J.H. Nordlien, S. Ono, N. Masuko, Morphology and structure of oxide films formed on magnesium by exposure to air and water, J. Electrochem. Soc. 142 (1995) 3320-3322. https://doi.org/10.1149/1.2049981
  25. Y. Zhu, G. Wu, Y.H. Zhang, Q. Zhao, Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31, Appl. Surf. Sci. 257 (2011) 6129-6137. https://doi.org/10.1016/j.apsusc.2011.02.017
  26. M. Taheri, R.C. Phillips, J.R. Kish, G.A. Botton, Analysis of the surface film formed on Mg by exposure to water using a FIB cross-section and STEM-EDS, Corros. Sci. 59 (2012) 222-228. https://doi.org/10.1016/j.corsci.2012.03.001
  27. H.B. Yao, Y. Li, A.T.S. Wee, An XPS investigation of the oxidation/corrosion of melt-spun Mg, Appl. Surf. Sci. 158 (2000) 112-119. https://doi.org/10.1016/S0169-4332(99)00593-0
  28. S. Feliu, C. Maffiotte, A. Samaniego, J.C. Galvan, V. Barranco, Effect of the chemistry and structure of the native oxide surface film on the corrosion properties of commercial AZ31 and AZ61 alloys, Appl. Surf. Sci. 257 (2011) 8558-8568. https://doi.org/10.1016/j.apsusc.2011.05.014
  29. S. Feliu, J.C. Galvan, A. Pardo, M.C. Merino, R. Arrabal, Native air-formed oxide film and its effect on magnesium alloys corrosion, Corrosion 3 (2010) 80-91.
  30. M. Taheri, J.R. Kish, Nature of surface film formed on Mg exposed to 1 M NaOH, J. Electrochem. Soc. 160 (2013) C36-C41.
  31. R.C. Phillips, J.R. Kish, Nature of surface film on matrix phase of Mg alloy AZ80 formed in water, Corrosion 69 (2013) 813-820. https://doi.org/10.5006/0938
  32. P. Kurze, Corrosion and Corrosion Protection of Magnesium, in Magnesium - Alloys and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003) 218-225.
  33. M. Santamaria, F. Di Quarto, S. Zanna, P. Marcus, Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS), Electrochim. Acta 53 (2007) 1314-1324. https://doi.org/10.1016/j.electacta.2007.03.019
  34. S. Feliu Jr., M.C. Merino, R. Arrabal, A.E. Coy, E. Matykina, XPS study of the effect of aluminium on the atmospheric corrosion of AZ31 magnesium alloy, Surf. Interface Anal. 41 (2009) 143-150. https://doi.org/10.1002/sia.3004
  35. S. Feliu Jr., A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80and AZ91D magnesium alloys, Appl. Surf. Sci. 255 (2009) 4102-4108. https://doi.org/10.1016/j.apsusc.2008.10.095
  36. R. Lindström, L.G. Johansson, G.E. Thompson, P. Skeldon, J.E. Svensson, Corrosion of magnesium in humid air, Corros. Sci. 46 (2004) 1141-1158. https://doi.org/10.1016/j.corsci.2003.09.010
  37. L. Wang, T. Shinohara, B.P. Zhang, Influence of chloride, sulphate and bicarbonate anions on the corrosion behaviour of AZ31 magnesium alloy, J. Alloys Compd. 496 (2010) 500-507. https://doi.org/10.1016/j.jallcom.2010.02.088
  38. S. Feliu Jr., C. Maffiotte, J.C. Galvan, V. Barranco, Atmospheric corrosion of magnesium alloys AZ31 and AZ61 under continuous condensation conditions, Corros. Sci. 53 (2011) 1865-1872. https://doi.org/10.1016/j.corsci.2011.02.003
  39. S.A. Salman, R. Ichino, M. Okido, A Comparative Electrochemical Study of AZ31 and AZ91 Magnesium Alloy, Int. J. Corros. (2010) 1-7.