DOI QR코드

DOI QR Code

Effect of schizandra berry dregs and rice bran treatment on γ-aminobutyric acid (GABA) content enhancement in Pleurotus ostreatus

오미자박과 미강 첨가배지가 느타리버섯 자실체의 γ-aminobutyric acid(GABA) 함량에 미치는 효과

  • 정윤경 (경기도농업기술원 버섯연구소) ;
  • 김정한 (경기도농업기술원 버섯연구소) ;
  • 백일선 (경기도농업기술원 버섯연구소) ;
  • 강영주 (경기도농업기술원 버섯연구소) ;
  • 지정현 (경기도농업기술원 버섯연구소)
  • Received : 2017.06.16
  • Accepted : 2017.06.28
  • Published : 2017.06.30

Abstract

This study was carried out to establish a cultivation technique for increasing the ${\gamma}$-aminobutyric acid (GABA) content in the fruit body of mushrooms by adding processed by-products. For the oyster mushroom 'Heucktari', addition of green tea powder, sea tangle powder, and green tea dregs resulted in very poor primordia formation, fruit body growth, and increased GABA. However, addition of 10% schizandra berry dregs and 1% rice bran to the basal substrate induced 100% and 10% increases, in GABA content in the fruit bodies compared to the control treatment without by-product, respectively. In addition, fruit body growth and primordia formation were greatly increased by these treatments. Therefore, GABA content was increased when the substrate was prepared by mixing an appropriate amount of schizandra berry dregs and rice bran.

느타리버섯(Pleurotus ostreatus)'흑타리'의 기본배지 조성에 농산물 부산물 유래 첨가용 배지를 추가하였을 경우 기억력 증진물질 중인 하나인 GABA(Gamma-amino butyric acid)함량을 증가시킬 수 있는 배지재료와 첨가수준을 구명한 결과는 다음과 같다. '흑타리'는 5% 녹차가루 처리에서 발이율과 수량이 현저히 떨어졌고, 다시마가루는 첨가된 전체 처리구에서 생육이 불량하였으며, 10% 녹차박과 오미자박 처리구에서는 생육이 가장 양호하였으나 녹차박 처리구보다는 오미자박 처리구에서 기능성물질 함량이 더 우수한 것으로 분석되었다. 또한, 첨가 수준에 따른 자실체의 GABA 함량은 무처리 대비 녹차가루는 2%, 녹차박은 10%, 다시마가루는 1% 정도 증가되었으나, 오미자박은 5%, 10%, 15%, 미강은 1%처리구에서 1.2~2.1배 수준까지 증가되는 양상을 보였다. 결론적으로, 느타리버섯 '흑타리'의 발이율과 생육 뿐만 아니라 GABA 함량 증가를 고려한 적합 첨가 배지로는 오미자박과 미강처리시 가장 양호했으며, 자실체 GABA 함량은 오미자박 10% 처리구에서 2.1배, 미강 1% 처리구에서 12%정도가 증가됨을 알 수 있었다.

Keywords

References

  1. Bown AW, Shelp BS. 1997. The metabolism and function of${\gamma}$-aminobutyric acid. Plant Physiol. 115:1-5. https://doi.org/10.1104/pp.115.1.1
  2. Chung HJ, Jang SH, Cho HY, Lim ST. 2009. Effects of steeping and anaerobic treatment on GABA(${\gamma}$-amino butyric acid) content in germination waxy hullless barely. LWT-Food Sci Technol. 42:1712-1716. https://doi.org/10.1016/j.lwt.2009.04.007
  3. Cushman DW, Cheung HS. 1971. Spectrophotometric assay and properties of the angiotensin -converting enzyme of rabbit lung. Biochem Pharmacol. 20:1637-1648. https://doi.org/10.1016/0006-2952(71)90292-9
  4. Ellman GL, Courtney KD, Andres Vjr, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 4:88-95.
  5. Han JT, Ahn EM, Park JK, Cho SW, Heon SG, Jang JS, Kim CK, Choi SY, Baek NI. 2000. Isolation of anticonvulsant compounds from the fruits of Schizandra chinensis Baili. Agric Chem Biotechnol. 43:72-77.
  6. Jason F. Sandahl, Jeffrey J, Jenkins. 2002. Pacific steelhead(Oncorhynchus mykiss)exposed to chlorpyrifos: Benchmark concentration estimates for acetylcholinesterase inhibition. Environ Toxicol Chem. 21:2452-2458. https://doi.org/10.1002/etc.5620211126
  7. Jung YS, Park SJ, Kim JE, Yang SA, Park JH, Kim JH, Jhee KH, Lee SP, Lee IS. 2012. A comparative study of GABA, glutamate contents, acetylcholinesterase inhibition and antiradical activity of the methanolic extracts from 10 edible plants. Kor J Food Sci. 44:447-451. https://doi.org/10.9721/KJFST.2012.44.4.447
  8. Laboure AM, Gangnon J, Lescure AM. 1993. Purification and characterization of a phytase accumulated in maize(Zea mays) seedlings during germination. Biochem J. 295:413-419. https://doi.org/10.1042/bj2950413
  9. Lee LS, Cha HS, Park JD, Jang DJ, Kim SH. 2008. Physicochemical properties of mushroom cultivated with green tea. Kor J Food Sci Nutr. 37:190-194. https://doi.org/10.3746/jkfn.2008.37.2.190
  10. Oh SH, Choi WG, 2000. production of the quality germinated brown rices containing high ${\gamma}$-aminobutyric acid by chitosan application. Kor J Biotechnol. Bioeng. 15:615-620.
  11. Oh SH, Kim SH, Moon YJ, Choi WG. 2002. Changes in the levels of ${\gamma}$-amino butyric acid and some amino acids by application of a glutamic acid solution for the germination of brown rice. Kor J Biotechnol Bioeng. 17:49-53.
  12. Oh SH, Lee IT, Park KB, Kim Bj. 2002. Changes in the levels of water soluble protein and free amino acids in brown rice germinated in a chitosan/glutamic acid solution. Kor J Biotechnol Bioeng. 17:515-519.
  13. Rural Development Administration(RDA). 2003. Agricultural experiment investigation standard. Suwon. pp.151-161.
  14. Rural Development Administration(RDA). 2012. Manual for agricultural investigation. Suwon. SAS. 2010. SAS/STAT User's Guide, version 9, vol. 2, 4thed. SAS Institute, Cary, NC.
  15. Shelp BJ, Bown AW, McLean MD. 1999. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4:446-452. https://doi.org/10.1016/S1360-1385(99)01486-7
  16. Sun YK, Koo HM, Park GG, Yang YJ. 2016. Characteristics of enzymatic hydrolysates of rice bran and rice protein by mixing ratio and hydrolysis times. Kor J Food Sci Nutr. 45:1460-1466. https://doi.org/10.3746/jkfn.2016.45.10.1460
  17. Xinga SG, Jun YB, Hau ZW, Liang LY. 2007. Higher accumulation of ${\gamma}$-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in glycine max (L.) Merr. Roots. Plant Physiol Biochem. 45:560-566. https://doi.org/10.1016/j.plaphy.2007.05.007
  18. Zhang D, Bown AW. 1996. The rapid determination of ${\gamma}$-aminobutyric acid. Phytochemistry 44:1007-1009.