DOI QR코드

DOI QR Code

Salt and Pepper Noise Removal using 2-Dimensional Spline Interpolation

2차원 스플라인 보간법을 이용한 Salt and Pepper 잡음 제거

  • Kwon, Se-Ik (Dept. of Control and Instrumentation Eng., Pukyong National University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyong National University)
  • Received : 2017.01.26
  • Accepted : 2017.02.14
  • Published : 2017.06.30

Abstract

As the society increasingly embraces the high - tech digital information age, the field of image processing becomes progressively more branched out and becoming an imperative field. However, image data is deteriorated due to various causes during transmission and salt and pepper noise is typical. Typical methods for removing salt and pepper noise include CWMF, SWMF, and A-TMF. However, existing methods are somewhat insufficient in their ability to remove noise in salt and pepper noise environments. Therefore, in this paper, after it is determined whether noise removal is needed, the following measures were taken. If the center pixel was non-noise, the original pixel was preserved, If it was noise, we proposed a two - dimensional spline interpolation method and a median filter depending on the noise density of the local mask. For the purpose of objective judgment, we compared the results with that of existing methods and used PSNR (peak signal to noise ratio) as a judgment criterion.

영상처리는 사회가 고도의 디지털 정보화 시대로 발전함에 따라 응용분야가 점차 다양해지고, 중요한 분야로 각광 받고 있다. 그러나 영상 데이터는 전송하는 과정에서 여러 원인으로 열화가 발생하며 주로 salt and pepper 잡음이 대표적이다. salt and pepper 잡음을 제거하기 위한 대표적인 방법에는 CWMF, SWMF, A-TMF가 있으며 기존의 방법들은 salt and pepper 잡음 환경에서 잡음 제거 특성이 다소 미흡하다. 따라서 본 논문에서는 salt and pepper 잡음을 제거하기 위해 잡음 판단 후, 중심화소가 비잡음인 경우 원 화소 그대로 보존하고, 잡음인 경우, 국부 마스크의 잡음밀도에 따라 2차원 스플라인 보간법 및 메디안 필터를 적용하여 처리하는 알고리즘을 제안하였다. 그리고 객관적 판단을 위해 기존의 방법들과 비교하였으며, 판단의 기준으로 PSNR(peak signal to noise ratio)을 사용하였다.

Keywords

References

  1. R. C. Gonzalez and R. E. woods, Digital Image Processing, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2008.
  2. K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications, 1st ed. Berlin, Germany: Springer, 2000.
  3. X. Long and N. H. Kim, "A Study on the Spatial Weighted Filter in AWGN Environment," Journal of Information and Communication Convergence Engineering, vol.17, no.3, pp.724-729, Mar. 2013.
  4. Y. Gao and N. H. Kim, "A Study on Improved Denoising Algorithm for Edge Preservation in AWGN Environments," Journal of Information and Communication Convergence Engineering, vol. 16, no. 8, pp.1773-1778, Aug. 2012.
  5. J. Wang and J. Hong, "A New Selt-Adaptive Weighted Filter for Removing Noise in Infrared images," in Proceeding of IEEE Information Engineering and Computer Science, Wuhan, China, pp.1-4, Dec. 2009.
  6. N. Zhou and S. Zhang, "An Adaptive Image Mixed Noise Removal Algorithm Based on MMTD," in Proceeding of Digital Information Processing, Data Mining, and Wireless Communications, Moscow, Russia, pp.93-98, July 2016.
  7. K. Vasanth, K. Kumar, S. Saravanan, "Decision Based Unsymmetrical Trimmed Mode Filter for th Removal of Salt and Pepper Noise in Images," in Proceeding of 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies, Abu Dhabi, pp.1-7, May 2015.