DOI QR코드

DOI QR Code

지반의 공간변동성을 고려한 액상화에 의한 침하량의 확률론적 해석

Probabilistic Analysis of Liquefaction Induced Settlement Considering the Spatial Variability of Soils

  • 봉태호 (오레곤 주립대학교 토목건설공학과) ;
  • 김병일 (명지대학교 토목환경공학과)
  • Bong, Tae-Ho (School of Civil and Construction Engrg., Oregon State Univ.) ;
  • Kim, Byoung-Il (Dept. of Civil and Environmental Engrg., Myongji Univ.)
  • 투고 : 2017.03.02
  • 심사 : 2017.05.17
  • 발행 : 2017.05.31

초록

액상화는 지진에 의해 발생하는 대표적인 피해 중 하나로 이에 대한 가능성을 평가하기 위한 많은 방법들이 개발되었으며, 최근에는 지반이 갖는 불확실성을 합리적으로 고려하기 위한 확률론적 접근방법에 대한 연구가 이루어지고 있다. 본 연구에서는 지반의 물성치가 갖는 공간 변동성을 고려하여 확률론적 해석을 수행하고자 서로 다른 변동특성을 갖는 세 지점의 CPT 데이터를 활용하여 콘관입 저항치에 대한 공간 변동성을 평가하였다. 이후, 각 지점의 공간 변동성을 고려한 콘관입 저항치의 확률장을 생성하였으며, CPT기반 액상화 평가방법을 통하여 액상화에 의해 유발되는 침하량의 확률론적 해석을 수행하였다. 연구결과, 공간변동성이 고려되지 않을 경우 지반의 불확실성을 과대평가할 수 있으며, 기준 허용 침하량에 따라 약 30%까지 큰 확률론적 차이가 발생할 수 있는 것으로 나타났다.

Liquefaction is one of the major seismic damage, and several methods have been developed to evaluate the possibility of liquefaction. Recently, a probabilistic approach has been studied to overcome the drawback of deterministic approaches, and to consider the uncertainties of soil properties. In this study, the spatial variability of cone penetration resistance was evaluated using CPT data from three locations having different variability characteristics to perform the probabilistic analysis considering the spatial variability of soil properties. Then the random fields of cone penetration resistance considering the spatial variability of each point were generated, and a probabilistic analysis of liquefaction induced settlement was carried out through CPT-based liquefaction evaluation method. As a result, the uncertainty of soil properties can be overestimated when the spatial variability is not considered, and significant probabilistic differences can occur up to about 30% depending on the allowable settlement.

키워드

참고문헌

  1. Agterberg, F. B. (1970), "Autocorrelation Function in Geology, Proceeding of a Colloquium on Geostatistics", University of Kansas, Lawrence, pp.113-141.
  2. Andrus, R. D. and Stokoe, K. H. (2000), "Liquefaction Resistance of Soils from Shear-wave Velocity", Journal of Geotechnical and Geoenvironmental Engineering, Vol.126, No.11, pp.1015-1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)
  3. Baecher, G. B. and Christian, J. T. (2003), Reliability and Statistics in Geotechnical Engineering, John Wiley, Chichester, UK.
  4. Bennett, R. J. (1979), Spatial Time Series: analysis, forecasting and control, London: Pion.
  5. Boulanger, R. W. and Idriss, I. M. (2014), "CPT and SPT based Liquefaction Triggering Procedures", Report No. UCD/CGM-14/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA.
  6. Cetin, K. O., Seed, R. B., Der Kiureghian, A., Tokimatsu, K., Harder, L. F., Kayen, R.E., and Moss, R. E. S. (2004), "Standard Penetration Test-Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential", Journal of Geotechnical and Geoenvironmemal Engineering, Vol.130, No.12, pp.1314-1340. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1314)
  7. DeGroot, D. J. and Baecher, G. B. (1993), "Estimating Autoconvariance of In-situ Soil Properties", Journal of Geotechnical and Geoenvironmental Engineering, Vol.119, No.1, pp.147-166. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(147)
  8. Elkateb, T., Chalaturnyk, R., and Robertson, P. K. (2003), "An Overview of Soil Heterogeneity: Quantification and Implications on Geothchnical Field Problems", Canadian Geotechnical Journal, Vol.40, No.1, pp.1-15. https://doi.org/10.1139/t02-090
  9. Ghanem, R. G. and Spanos, P. D. (2003), Stochastic Finite Elements: A Spectral Approach, Revised Edition, Dover Publications.
  10. Harder, L. F. and Seed, H. B. (1986), "Determination of Penetration Resistance or Coarse-grained Soils Using the Becker Hammer Drill", Rep. UCB/EERC-86/06, Earthquake Engrg. Res. Ctr., University of California at Berkeley.
  11. Hwang, J. H., Yang, C. W., and Juang, D. S. (2004), "A Practical Reliability-based Method for Assessing Soil Liquefaction Potential", Soil Dynamics and Earthquake Engineering, 24, pp.761-770. https://doi.org/10.1016/j.soildyn.2004.06.008
  12. Idriss, I. M. and Boulanger, R. W. (2008), "Soil Liquefaction during Earthquakes", Monograph MNO-12, Earthquake Engineering Research Institute, Oakland, CA.
  13. Ishihara, K. and Yoshimine, M. (1992), "Evaluation of Settlements in Sand Deposits Following Earthquakes", Soils and Foundations, Vol.32, No.1, pp.173-88. https://doi.org/10.3208/sandf1972.32.173
  14. Jaksa, M. B. (1995), "The Influence of Spatial Variability on the Geotechnical Design Properties of a Stiff, Overconsolidated Clay", Ph.D. Thesis, Faculty of Engineering, University of Adelaide.
  15. Juang, C. H., Fang, S. Y., and Khor, E. H. (2006), "First-Order Reliability Method for Probabilistic Liquefaction Triggering Analysis Using CPT", Journal of Geotechnical and Geoenvironmemal Engineering, Vol.132, No.3, pp.337-350. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(337)
  16. Juang, C. H., Rosowsky, D. V., and Tang, W. H. (1999), "Reliability-based Method for Assessing Liquefaction Potential of Soils", Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.8, pp.684-689. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(684)
  17. Jung, M. H., Kim, J. H., Jeong, S. G., and Lee, S. (2007), "Improvement Scheme of Simplified Liquefaction Potential Evaluation for a Dredged and Reclaimed Ground", Journal of the Korean Geotechnical Society, Vol.23, No.8, pp.47-57.
  18. Kim, S. I., Park, I. J., and Choi, J. S. (2000), "A Study on the Assesment of Liquefaction potential in Korea", Journal of the Korean Society of Civil Engineers, Vol.20, No.2C, pp.129-139.
  19. Kim, S. I., Yu, J. S., Park, K. B., and Park, S. Y. (2006), "Evaluation of Liquefiable Soils by Energy Concept", Korea Geotechnical Society Spring Conference, pp.590-599.
  20. KMA, http://www.kma.go.kr/weather/earthquake/domestictrend.jsp
  21. Li, K. S. and Lumb, P. (1987), "Probabilistic Design of Slopes", Canadian Geotechnical Journal, Vol.24, No.4, pp.520-535. https://doi.org/10.1139/t87-068
  22. Lumb, P. (1975), "Spatial Variability of Soil Properties", In Proceedings, 2nd Intl Conference on Application of Statistics and Probability to Soil and Structural Engineering, 2, pp.397-421.
  23. Lumb, P. (1968), "Statistical Aspects of Soil Measurements", In Proceedings, 4th Australian Road Research Conference, 4, pp. 1761-1770.
  24. Lumb, P. (1974), "Chapter 3: Applications of Statistics in Soil Mechanics", Soil Mechanics - New Horizons, Lee, I.K., Editor, American Elsevier, New York, pp.44-111.
  25. Mayne, P. W. (2007), "Cone Penetration Testing", NCHRP Synthesis 368: Transportation Research Board, Washington, DC.
  26. MOF (2014), Port and Fishing Port Design Standard and Explanation, Ministry of Oceans and Fisheries, Vol.1, Chapter 11, Korea.
  27. Nagase, H. and Ishihara, K. (1988), "Liquefaction-induced Compaction and Settlement of Sand during Earthquakes", Soils and Foundations, Vol.28, No.1, pp.66-76.
  28. Olsen, R. S. (1997), "Cyclic Liquefaction based on the Cone Penetrometer Test", In Proceedings, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, National Center for Earth-quake Engineering Research, State University of New York at Buffalo, Report No. NCEER-97-0022, pp.225-276.
  29. Olsen, R. S. (1984), "Liquefaction Analysis Using the Cone Penetrometer Test", In Proceedings, 8th World Conference on Earthquake Engineering EERI, San Francisco.
  30. Padilla, J. D. and Vanmarcke, E. H. (1974), "Settlement of Structure on Shallow Foundation", Research report R74-9, Department of Civil Engineering, MIT, Cambridge.
  31. Phoon, K. K. and Kulhawy, F. H. (1999), "Characterization of Geotechnical Variability", Canadian Geotechnical Journal, 36, pp. 612-624. https://doi.org/10.1139/t99-038
  32. Popescu, R., Prevost, J. H., and Deodatis, G. (2005), "3D Effects in Seismic Liquefaction of Stochastically Variable Soil Deposits", Geotechnique, Vol.55, No.1, pp.21-31. https://doi.org/10.1680/geot.2005.55.1.21
  33. Rackwitz, R. (2000), "Reviewing Probabilistic Soils Modelling", Computer and Geotechnics, 26, pp.199-223. https://doi.org/10.1016/S0266-352X(99)00039-7
  34. Ravi, V. (1992), "Statistical Modelling of Spatial Variability of Undrained Strength", Canadian Geotechnical Journal, Vol.29, No.5, pp.721-729. https://doi.org/10.1139/t92-080
  35. Robertson, P. K. and Wride, C. E. (1998), "Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test", Canadian Geotechnical Journal, 35, pp.442-459. https://doi.org/10.1139/t98-017
  36. Saygili, G. (2016), "Probabilistic Assessment of Soil Liquefaction Considering Spatial Variability of CPT Measurements", Georisk 10, pp.1-11.
  37. Seed, H. B. and Idriss, I. M. (1971), "Simplified Procedure for Evaluating Soil Liquefaction Potential", Journal of the Soil Mechanics and Foundation Division, Vol.97, No.9, pp.249-1273.
  38. Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. (1985), "Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations", Journal of Geotechnical Engineering, Vol.111, No.12, pp.1425-1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425)
  39. Shibata, T. and Teparaksa, W. (1988), "Evaluation of Liquefaction Potentials of Soils Using Cone Penetration Tests", Soils and Foundations, Vol.28, No.2, pp.49-60. https://doi.org/10.3208/sandf1972.28.2_49
  40. Spanos, P. D. and Ghanem, R. G. (1989), "Stochastic Finite Element Expansion for Random Media", Journal of Engineering Mechanics, Vol.115, No.5, pp.1035-1053. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1035)
  41. Sudret, B. and Kiureghian, A. D. (2000), "Stochastic Finite Element Methods and Reliability: A State-of the-Art Report", Tech. Rep. Report No. UCB/SEMM-2000/8, Department of Civil Engineering & Environmental Engineering, University of California, Berkeley.
  42. Vanmarcke, E. H. (1977), "Probabilistic Modeling of Soil Profiles", Journal of the Geotechnical Engineering Division, ASCE, 103 (GT11), pp.1227-1246.
  43. Vanmarcke, E. H. (1983), Random fields: Analysis and synthesis. MIT Press, Cambridge.
  44. Vivek, B. and Raychowdhury, P. (2011), "Probabilistic Approach for Evaluation Soil Liquefaction Considering Spatial Variability of Soil", Proceedings of Indian Geotechnical Conference, Kochi.
  45. Yi, J. H., Kwon, O. S., and Park, W. S. (2006), "Evaluation of Liquefaction Potential for Soil Using Probabilistic Approaches", Journal of the Korean Society of Civil Engineers, 26(5C), pp. 313-322.
  46. Yoshimine, M., Nishizaki, H., Amano, K., and Hosono, Y. (2005), "Flow Deformation of Liquefied Sand under Constant Shear Load and its Application to Analysis of Flow Slide of Infinite Slope", Soil Dynamics and Earthquake Engineering, 26, pp.253-264.
  47. Zhou, S. (1980), "Evaluation of the Liquefaction of Sand by Static Cone Penetration Test", In Proceedings, 7th World Conference on Earthquake Engineering, Istanbul, Turkey, Vol.3, pp.156-162.