DOI QR코드

DOI QR Code

섬유/모래로 보강된 미연소탄소탄소 고함량 플라이애쉬의 지반공학적특성

Geotechnical Characteristics of Fly Ash Containing High Content of Unburned Carbons Reinforced with Fibers and Sand

  • 윤보영 (고려대학교 건축사회환경공학부) ;
  • 이창호 (전남대학교 해양토목공학과) ;
  • 추현욱 (고려대학교 건축사회환경공학부) ;
  • 이우진 (고려대학교 건축사회환경공학부)
  • Yoon, Boyeong (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Changho (Dept. of Marine and Civil Engrg., Chonnam National Univ.) ;
  • Choo, Hyunwook (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Woojin (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 투고 : 2017.02.27
  • 심사 : 2017.04.11
  • 발행 : 2017.04.30

초록

미연소탄소 함량이 높은 플라이애쉬(High carbon contents fly ash, HCFA)는 콘크리트 혼화재로의 사용이 부적합하여 대부분 매립되고 있다. 이에 본 연구는 미연소탄소함량이 높은 플라이애쉬의 지반공학적 활용 방안을 모색하기 위하여 폴리프로필렌섬유(Polypropylene fiber, PP fiber)와 모래로 보강하여 일축압축시험과 벤더엘리먼트가 설치된 일차원 수정 압축실험을 진행하였다. 섬유의 보강효과로 섬유비가 증가함에 따라 일축압축강도(UCS), 일축압축강도시의 변형률과 동일 간극비 상에서의 최대전단탄성계수(Maximum Shear Modulus, $G_{max}$)가 증가하였다. 모래로 보강된 경우 혼합물의 UCS는 다소 증가하였으나 UCS 시의 변형률은 모래비의 영향을 받지 않았으며, 모래입자는 HCFA 입자간의 접촉을 방해하여 혼합물의 $G_{max}$를 감소시켰다. 그러나 20% 이상의 모래비에 대하여 동일 에너지로 다짐하였을 시, 조밀한 상태로 조성되며 그로 인한 보강 효과를 기대할 수 있었다. 섬유나 모래로 보강된 HCFA의 압축지수(Compression index, $C_c$)는 보강재의 종류와 관계없이 주로 초기 간극비에 의해 결정되었다.

Most of high carbon fly ashes (HCFA) are discarded in landfills with high costs due to low recycling rate. This study aims to explore the geotechnical behaviors of HCFA mixtures reinforced with fiber and sand. A series of compaction test, unconfined compressive strength test and modified 1D consolidation test with bender element were performed. Specimens were prepared at their optimal moisture contents based on the results of compaction tests. The results of this study demonstrate that the inclusion of fibers to the matrix of HCFA increases unconfined compressive strength (UCS), strain at UCS, and maximum shear modulus ($G_{max}$) at a given void ratio. Reinforcement with sand increases UCS of HCFA; while the strain at UCS is irrelevant with sand fractions. Sand particles may disrupt the direct contacts between HCFA particles at low sand content, resulting in a decrease in $G_{max}$. However, it can be expected that the mixtures with sand content larger than 20% are in dense state; thus, $G_{max}$ of HCFA reinforced with sand shows greater value than that of unreinforced HCFA compacted with the same energy. Regardless of types of reinforcement, the compression index ($C_c$) of both fiber and sand reinforced HCFA is mainly determined by initial void ratio.

키워드

참고문헌

  1. Im, E.S., Han, H.S., Park, M.C., and Shin, B.C. (2012), "Review of Shallow Soil Improvement Methods and Development of Electric Heating Method for Shallow Soil Improvement", Geoenvironmental Engineering, Vol.13, No.3, pp.40-55 (in Korean).
  2. Bartonova, L. (2015), "Unburned Carbon from Coal Combustion Ash: An Overview", Fuel Processing Technology, Vol.134, pp.136-158. https://doi.org/10.1016/j.fuproc.2015.01.028
  3. Campbell, D., Fox, W., Aitken, R., and Bell, L. (1983), "Physical Characteristics of Sands Amended with Fly Ash", Soil Research, Vol.21, No.2, pp.147-154. https://doi.org/10.1071/SR9830147
  4. Chang, A., Lund, L. J., Page, A. L., and Warneke, J. (1977), "Physical Properties of Fly Ash-Amended Soils", Journal of Environmental Quality, Vol.6, No.3, pp.267-270. https://doi.org/10.2134/jeq1977.00472425000600030007x
  5. Chang, C. S., Wang, J.-Y., and Ge, L. (2015), "Modeling of Minimum Void Ratio for Sand-Silt Mixtures", Engineering Geology, Vol. 196, pp.293-304. https://doi.org/10.1016/j.enggeo.2015.07.015
  6. Choo, H., Lee, W., and Lee, C. (2016), "Compressibility and Small Strain Stiffness of Kaolin Clay Mixed with Varying Amounts of Sand", KSCE Journal of Civil Engineering, DOI:10.1007/s12205- 016-1787-4, pp.1-10.
  7. Choo, H., Yeboah, N., and Burns, S. (2015). "Small to Intermediate Strain Properties of Fly Ashes with Various Carbon and Biomass Contents", Canadian Geotechnical Journal, Vol.53, No.1, pp.35-48. https://doi.org/10.1139/cgj-2014-0069
  8. Consoli, N. C., Casagrande, M. D., and Coop, M. R. (2005), "Effect of Fiber Reinforcement on the Isotropic Compression Behavior of a Sand", J Geotech Geoenviron, Vol.131, No.11, pp.1434-1436. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1434)
  9. Fatahi, B., Fatahi, B., Le, T., and Khabbaz, H. (2013), "Small- Strain Properties of Soft Clay Treated with Fibre and Cement", Geosynthetics International, Vol.20, No.4, pp.286-300. https://doi.org/10.1680/gein.13.00018
  10. Freeman, E., Gao, Y. M., Hurt, R., and Suuberg, E. (1997), "Interactions of Carbon-Containing Fly Ash with Commercial AirEntraining Admixtures for Concrete", Fuel, Vol.76, No.8 SPEC. ISS., pp.761-765. https://doi.org/10.1016/S0016-2361(96)00193-7
  11. Hardin, B. O. and Drnevich, V. P. (1972), "Shear Modulus and Damping in Soils: Measurement and Parameter Effects", Journal of Soil Mechanics & Foundations Div, Vol.98, No.sm6.
  12. Hardin, B. O. and Richart, F. E. (1963), "Elastic Wave Velocities in Granular Soils", Journal of Soil Mechanics & Foundations, Vol. 89, pp.33-65.
  13. Harianto, T., Hayashi, S., Du, Y., and Suetsugu, D. (2008), "Experimental Investigation on Strength and Mechanical Behavior of Compacted Soil-Fiber Mixtures", Geosynthetics in Civil and Environmental Engineering, Springer, pp.392-397.
  14. Ibraim, E. and Fourmont, S. (2007), "Behaviour of Sand Reinforced with Fibres", Soil Stress-Strain Behavior: Measurement, Modeling and Analysis, Springer, pp.807-818.
  15. Jala, S. and Goyal, D. (2006), "Fly Ash as a Soil Ameliorant for Improving Crop Production-a Review", Bioresource Technology, Vol.97, No.9, pp.1136-1147. https://doi.org/10.1016/j.biortech.2004.09.004
  16. Kaniraj, S. R. and Gayathri, V. (2003), "Geotechnical Behavior of Fly Ash Mixed with Randomly Oriented Fiber Inclusions", Geotextiles and Geomembranes, Vol.21, No.3, pp.123-149. https://doi.org/10.1016/S0266-1144(03)00005-0
  17. Kim, B., Prezzi, M., and Salgado, R. (2005), "Geotechnical Properties of Fly and Bottom Ash Mixtures for Use in Highway Embankments", J Geotech Geoenviron, Vol.131, No.7, pp.914-924. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(914)
  18. Kumar, A., Walia, B. S., and Bajaj, A. (2007), "Influence of Fly Ash, Lime, and Polyester Fibers on Compaction and Strength Properties of Expansive Soil", Journal of Materials in Civil Engineering, Vol.19, No.3, pp.242-248. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(242)
  19. Kumar, P. and Singh, S. P. (2008), "Fiber-Reinforced Fly Ash Subbases in Rural Roads", Journal of transportation engineering, Vol.134, No.4, pp.171-180. https://doi.org/10.1061/(ASCE)0733-947X(2008)134:4(171)
  20. Kutchko, B. G. and Kim, A. G. (2006), "Fly Ash Characterization by Sem-Eds", Fuel, Vol.85, No.17, pp.2537-2544. https://doi.org/10.1016/j.fuel.2006.05.016
  21. Lee, C., Lee, J. S., Lee, W., and Cho, T. H. (2008), "Experiment Setup for Shear Wave and Electrical Resistance Measurements in an Oedometer", Geotechnical Testing Journal, Vol.31, No.2, pp. 149-156.
  22. Lee, J.-S. and Santamarina, J. C. (2005), "Bender Elements: Performance and Signal Interpretation", J Geotech Geoenviron, Vol. 131, No.9, pp.1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
  23. Maher, M. H. and Gray, D. H. (1990), "Static Response of Sands Reinforced with Randomly Distributed Fibers", Journal of Geotechnical Engineering, Vol.116, No.11, pp.1661-1677. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661)
  24. Maher, M. H. and Ho, Y. C. (1994), "Mechanical-Properties of Kaolinite Fiber Soil Composite", J Geotech Eng-Asce, Vol.120, No.8, pp.1381-1393. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1381)
  25. Maher, M. H. and Woods, R. D. (1990), "Dynamic Response of Sand Reinforced with Randomly Distributed Fibers", Journal of Geotechnical Engineering, Vol.116, No.7, pp.1116-1131. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:7(1116)
  26. Makiuchi, K. and Minegishi, K. (2001), "Strain-Induced Toughness and Shearing Characteristics of Short-Fiber Reinforced Soils", Proc., Landmarks in Earth Reinforcement: Proceedings of the International Symposium on Earth Reinforcement: Fukuoka, Kyushu, Japan, 14-16 November, 2001, Taylor & Francis US, 83.
  27. Michalowski, R. L. and Cermak, J. (2003), "Triaxial Compression of Sand Reinforced with Fibers", J Geotech Geoenviron, Vol.129, No.2, pp.125-136. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:2(125)
  28. Michalowski, R. L. and Zhao, A. (1996), "Failure of Fiber-Reinforced Granular Soils", Journal of Geotechnical Engineering, Vol.122, No.3, pp.226-234. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(226)
  29. Minnick, L. (1959), "Fundamental Characteristics of Pulverized Coal Fly Ashes", Proc., Proc. ASTM, pp.1155-1177.
  30. Mitchell, J. K. and Soga, K. (2005), "Fundamentals of Soil Behavior".
  31. Muntohar, A. (2009), "Influence of Plastic Waste Fibers on the Strength of Lime-Rice Husk Ash Stabilized Clay Soil", Civil Engineering Dimension, Vol.11, No.1, pp.pp. 32-40.
  32. Olgun, M. (2013), "Effects of Polypropylene Fiber Inclusion on the Strength and Volume Change Characteristics of Cement-Fly Ash Stabilized Clay Soil", Geosynthetics International, Vol.20, No.4, pp.263-275. https://doi.org/10.1680/gein.13.00016
  33. Openshaw, S. C. (1992), "Utilization of Coal Fly Ash", Gainesville, Florida: University of Florida.
  34. Pandey, V. C. and Singh, N. (2010), "Impact of Fly Ash Incorporation in Soil Systems", Agriculture, ecosystems & environment, Vol.136, No.1, pp.16-27. https://doi.org/10.1016/j.agee.2009.11.013
  35. Pandian, N. (2013), "Fly Ash Characterization with Reference to Geotechnical Applications", Journal of the Indian Institute of Science, Vol.84, No.6, pp.189.
  36. Sadek, S., Najjar, S. S., and Freiha, F. (2010), "Shear Strength of Fiber-Reinforced Sands", J Geotech Geoenviron, Vol.136, No.3, pp.490-499. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000235
  37. Santamarina, J. C., Klein, A., and Fam, M. A. (2001), "Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring", Journal of Soils and Sediments, Vol.1, No.2, pp. 130-130. https://doi.org/10.1007/BF02987719
  38. Shukla, S. K., Shahin, M. A., and Abu-Taleb, H. (2015), "A Note on Void Ratio of Fibre-Reinforced Soils", International Journal of Geosynthetics and Ground Engineering, Vol.1, No.3, pp.1-5.
  39. Tang, C., Shi, B., Gao, W., Chen, F., and Cai, Y. (2007), "Strength and Mechanical Behavior of Short Polypropylene Fiber Reinforced and Cement Stabilized Clayey Soil", Geotextiles and Geomembranes, Vol.25, No.3, pp.194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002
  40. Thevanayagam, S., Shenthan, T., Mohan, S., and Liang, J. (2002), "Undrained Fragility of Clean Sands, Silty Sands, and Sandy Silts", J Geotech Geoenviron, Vol.128, No.10, pp.849-859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)
  41. Yetimoglu, T. and Salbas, O. (2003), "A Study on Shear Strength of Sands Reinforced with Randomly Distributed Discrete Fibers", Geotextiles and Geomembranes, Vol.21, No.2, pp.103-110. https://doi.org/10.1016/S0266-1144(03)00003-7
  42. Yoo, S. W. (2013), "The Present State and Prospect of Fly Ash Quality of Domestic Thermal Power Plant", Magazine of RCR, Vol.8, No.2, pp.8-12. https://doi.org/10.14190/MRCR.2013.8.2.008