DOI QR코드

DOI QR Code

Three-Hinge 파괴의 메커니즘 및 안정성에 관한 분석

A Study on the Stability and Mechanism of Three-Hinge Failure

  • 문준식 (경북대학교 건설환경에너지공학부) ;
  • 박우정 ((주)삼보기술단 지반사업본부)
  • Moon, Joon-Shik (School of Architectural, Civil, Environmental and Energy Engrg., Kyungpook National Univ.) ;
  • Park, Woo-Jeong (Dept. of Geotechnical Engrg., Sambo Engineering Co., Ltd.)
  • 투고 : 2016.09.22
  • 심사 : 2017.02.21
  • 발행 : 2017.04.30

초록

3힌지파괴(three-hinge failure)는 비탈면 방향과 평행한 절리와 그에 직교하는 절리로 구성된 암반비탈면에서 발생한다. 비탈면 설계 시 일반적으로 쓰이는 한계평형법과 유한요소법은 이러한 암반비탈면 내 3힌지파괴를 모사하기에는 어려움이 따른다. 따라서 본 연구에서는 3힌지파괴를 모사하기 위해 2차원 DEM 해석프로그램인 UDEC을 이용하여 풋월 비탈면에서 흔히 발생되는 3힌지파괴의 메커니즘 및 안정성에 미치는 영향 인자에 대하여 매개변수 분석을 연구하였다. 매개변수 분석은 암반절리(층면절리, 공액절리 등)의 구조 및 지하수위 조건 등을 변경하여 수행하였다. 수치해석 결과, 3힌지파괴를 유발하는 인자 중 지하수위의 영향이 가장 큰 것으로 나타났으며, 층면절리 및 기저부절리의 마찰각 변화에 따라 안전율과 파괴 형태가 다르게 나타나는 것으로 분석되었다. 본 연구결과를 통해 비탈면 보강을 포함한 풋월 비탈면의 최적설계 및 시공에 적용될 수 있을 것으로 판단된다.

Three-hinge failure occurs in a jointed rock slope with a joint set parallel with slope and a conjugate joint set. Limit Equilibrium Method (LEM) and Finite Element Method (FEM) which are commonly used for slope design, are not suitable for evaluating stability against three-hinge failure, and this study performed parametric study to analyze the failure mechanism and to find influence factors causing three-hinge failure using UDEC which is a commercial two-dimensional DEM based numerical program. Numerical analyses were performed for various joint structural conditions and joint properties as well as ground water conditions. It was found that pore water pressure is the main factor triggering the three-hinge failure and the mode of failure depends on friction angle of basal joint and bedding joint set. The results obtained from this study can be used for adequate and economic footwall slope reinforcement design and construction.

키워드

참고문헌

  1. Adhikary, D. P., Mühlhaus, H., and Dyskin, A. V. (2001), "A Numerical Study of Flexural Buckling of Foliated Rock Slopes", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.25, No.9, pp.871-884. https://doi.org/10.1002/nag.157
  2. Alejano, L. R., Ferrero, A. M., Ramirez-Oyanguren, P., and Alvarez Fernandez, M. I. (2011), "Comparison of Limit-equilibrium, Numerical and Physical Models of Wall Slope Stability", International Journal of Rock Mechanics and Mining Sciences, Vol.48, No.1, pp.16-26. https://doi.org/10.1016/j.ijrmms.2010.06.013
  3. Cavers, D. S. (1981), "Simple Methods to Analyze Buckling of Rock Slopes", Rock Mechanics Felsmechanik Mécanique des Roches, Vol.14, No.2, pp.87-104. https://doi.org/10.1007/BF01239857
  4. Cruden, D. M. (1985), "Rock Slope Movements in the Canadian Cordillera", Canadian Geotechnical Journal, Vol.22, No.4, pp. 528-540. https://doi.org/10.1139/t85-073
  5. Dawson, E. M., Roth, W. H., and Drescher, A. (1999), "Slope Stability Analysis by Strength Reduction", Geotechnique, Vol.49, No.6, pp.835-840. https://doi.org/10.1680/geot.1999.49.6.835
  6. Froldi, P. and Lunardi, P. (1995), "Buckling Failure Phenomena and their Analysis", Proc. of the 2nd International Conference on Mechanics of Jointed and Faulted Rock, Vienna, Austria, pp.595-604.
  7. Giani, G. P. (1992), Rock slope stability analysis, CRC Press, USA, pp.44-45.
  8. Havaej, M., Stead, D., Eberhardt, E., and Fisher, B. (2014), "Characterization of Bi-planar and Ploughing Failure Mechanisms in Footwall Slopes using Numerical Modelling", Engineering Geology, Vol.178, pp.109-120. https://doi.org/10.1016/j.enggeo.2014.06.003
  9. Hawley, P. M., Martin, D. C., and Acott, C. P. (1986), "Failure Mechanics and Design Considerations for Footwall Slopes", CIM Bulletin, Vol.79, No.896, pp.47-53.
  10. Hu, X. and Cruden, D. M. (1993), "Buckling Deformation in the Highwood Pass, Alberta, Canada", Canadian Geotechnical Journal, Vol.30, No.2, pp.276-286. https://doi.org/10.1139/t93-023
  11. ITASCA consulting Group, Inc. (2014), Universal Distinct Element Code, user's manual, Version 6.0, Minneapolis, Minnesota, USA.
  12. Kutter, H. K. (1974), "Mechanism of Slope Failure other than Pure Sliding", International Journal of Rock Mechanics and Mining Sciences & Geomechanics, Vol.13, No.5, pp.54.
  13. Moon, J. S. and Park, W. J. (2016), "Analysis of Influential Factors on Ploughing Failure of Footwall Slope", Journal of the Korean Society of Civil Engineers, Vol.36, No.4, pp.659-665. https://doi.org/10.12652/Ksce.2016.36.4.0659
  14. Ning, Y. J., An, X. M., and Ma, G. W. (2011), "Footwall Slope Stability Analysis with the Numerical Manifold Method", International Journal of Rock Mechanics and Mining Sciences, Vol.48, No.6, pp.964-975. https://doi.org/10.1016/j.ijrmms.2011.06.011
  15. Pant, S. and Adhikary, D. (1999), "Implicit and Explicit Modelling of Flexural Buckling of Foliated Rock Slopes", Rock Mechanics and Rock Engineering, Vol.32, No.2, pp.157-164. https://doi.org/10.1007/s006030050029
  16. Pereira, L. C. and Lana, M. S. (2013), "Stress-Strain Analysis of Buckling Failure in Phyllite Slopes", Geotechnical and Geological Engineering, Vol.31, No.1, pp.297-314. https://doi.org/10.1007/s10706-012-9556-8
  17. Qi, S., Lan, H., and Dong, J. (2015), "An Analytical Solution to Slip Buckling Slope Failure Triggered by Earthquake", Engineering Geology, Vol.194, pp.4-11. https://doi.org/10.1016/j.enggeo.2014.06.004
  18. Qin, S., Jiao, J. J. and Wang, S. (2001), "A Cusp Catastrophe Model of Instability of Slip-buckling Slope", Rock Mechanics and Rock Engineering, Vol.34, No.2, pp.119-134. https://doi.org/10.1007/s006030170018
  19. Seijmonsbergen, A. C., Woning, M. P., Verhoef, P. N. W. and de Graaff, L. W. S. (2005), "The Failure Mechanism of a Late Glacial Sturzstrom in the Subalpine Molasse (Leckner Valley, Vorarlberg, Austria)", Geomorphology, Vol.66, No.1, pp.277-286. https://doi.org/10.1016/j.geomorph.2004.09.016
  20. Serra de Renobales, T. (1987), "Strata Buckling in Footwall Slopes in Coal Mining", Proc. of the 6th International Conference on Rock Mechanics, ISRM, Montreal, Canada, pp.527-531.
  21. Silva, C. H. C. and Lana, M. S. (2014), "Numerical Modeling of Buckling Failure in a Mine Slope", Revista Escola de Minas Escola de Minas, Vol.67, No.1, pp.81-86. https://doi.org/10.1590/S0370-44672014000100012
  22. Stead, D. and Eberhardt, E. (1997), "Developments in the Analysis of Footwall Slopes in Surface Coal Mining", Engineering Geology, Vol.46, No.1, pp.41-61. https://doi.org/10.1016/S0013-7952(96)00084-1
  23. Tommasi, P., Campedel, P., Consorti, C., and Ribacchi, R. (2008), "A Discontinuous Approach to the Numerical Modelling of Rock Avalanches", Rock Mechanics and Rock Engineering, Vol.41, No.1, pp.37-58. https://doi.org/10.1007/s00603-007-0133-z
  24. Tommasi, P., Verrucci, L., Campedel, P., Veronese, L., Pettinelli, E., and Ribacchi, R. (2009), "Buckling of High Natural Slopes: The Case of Lavini di Marco (Trento-Italy)", Engineering Geology, Vol.109, No.1-2, pp.93-108. https://doi.org/10.1016/j.enggeo.2009.02.002
  25. Wang, W., Chigira, M., and Furuya, T. (2003), "Geological and Geomorphological Precursors of the Chiu-fen-erh-shan Landslide Triggered by the Chi-chi Earthquake in Central Taiwan", Engineering Geology, Vol.69, No.1-2, pp.1-13. https://doi.org/10.1016/S0013-7952(02)00244-2