DOI QR코드

DOI QR Code

End-Terminal Capping Effect on Mechanical Property of Transthyretin (TTR105-115) Amyloid Fibril

End-terminal Capping 효과가 아밀로이드 섬유의 기계적 특성에 미치는 영향 연구

  • Received : 2017.01.18
  • Accepted : 2017.04.04
  • Published : 2017.07.01

Abstract

The understanding of the mechanical properties of amyloid fibers, which induce various neurodegenerative diseases, is directly related to the amyloid growth mechanism. Diverse studies have been performed on amyloid fibers from the viewpoint of disease epidemiology. Recently, attempts have been made to use amyloid fibers as new materials because of their notable mechanical properties and self-aggregation abilities. In this study, the mechanical properties of transthyretin (TTR105-115), which induces cardiovascular disease, were evaluated using a molecular dynamics (MD) simulation. In particular, the effect of the end-terminal capping on the structural stability of TTR105-115 was evaluated. The mechanical behavior and properties of TTR105-115 were measured by steered molecular dynamics (SMD). We clarified the factors affecting the mechanical properties of these materials and suggested the possibility of utilizing them as nature inspired materials.

다양한 신경성 퇴행 질병을 유발하는 아밀로이드 섬유의 기계적 특징에 대한 이해는 아밀로이드 성장 메커니즘에 직접 관련되어 있기 때문에 질병 역학적 관점에서 많은 연구 진행 되어 왔다. 최근 아밀로이드 섬유의 높은 물성 값과 자가 결합능력을 통해 새로운 재료로 이용 하려는 시도가 진행되고 있다. 본 연구에서는 심혈관 질환을 유발하는 transthyretin($TTR_{105-115}$)의 핵심 영역의 기계적 특성을 분자 동역학 전산 역학을 통해 평가했다. 특히 end-terminal capping의 효과가 $TTR_{105-115}$의 구조적 안정성에 미치는 영향을 평가했다. 인장모사 분자 동역학을 통해(steered molecular dynamics, SMD) 기계적 거동과 물성을 측정하였다. 재료의 기계적 특성에 영향을 주는 인자를 밝히고 자연 모사 재료로써의 활용 가능성에 대한 제시를 하였다.

Keywords

References

  1. Merlini, G. and Bellotti, V., 2003, "Molecular Mechanisms of Amyloidosis," The New England Journal of Medicine, Vol. 349, No. 6, pp. 583-596. https://doi.org/10.1056/NEJMra023144
  2. Soto, C., 2003 "Unfolding the Role of Protein Misfolding in Neurodegenerative Diseases," Nature Reviews Neuroscience, Vol. 4, No. 1, pp. 49-60. https://doi.org/10.1038/nrn1007
  3. Chiti, F. and Dobson, C. M., 2006, "Protein Misfolding, Functional Amyloid, and Human Disease," Annual Review of Biochemistry, Vol. 75, pp. 333-366. https://doi.org/10.1146/annurev.biochem.75.101304.123901
  4. Hoppener, J. W. M., Ahren, B. and Lips, C. J. M., 2000, "Islet Amyloid and Type 2 Diabetes Mellitus," The New England Journal of Medicine, Vol. 343, No. 6, pp. 411-419. https://doi.org/10.1056/NEJM200008103430607
  5. Kad, N. M., Myers, S. L., Smith, D. P., Smith, D. A., Radford, S. E. and Thomson, N. H., 2003, "Hierarchical Assembly of ${\beta}$ 2-microglobulin Amyloid in Vitro Revealed by Atomic Force Microscopy," Journal of molecular biology, Vol. 330, No. 4, pp. 785-797. https://doi.org/10.1016/S0022-2836(03)00583-7
  6. Kad, N. M., Thomson, N. H., Smith, D. P., Smith, D. A. and Radford, S. E., 2001, "${\beta}$ 2-microglobulin and its Deamidated Variant, N17D form Amyloid Fibrils with a Range of Morphologies in Vitro," Journal of Molecular Biology, Vol. 313, No. 3, pp. 559-571. https://doi.org/10.1006/jmbi.2001.5071
  7. Haass, C. and Selkoe, D. J., 2007, "Soluble Protein Oligomers in Neurodegeneration: Lessons from the Alzheimer's Amyloid ${\beta}$-peptide," Nature Reviews Molecular Cell Biology, Vol. 8, No. 2, pp. 101-112. https://doi.org/10.1038/nrm2101
  8. Kotler, S. A., Walsh, P., Brender, J. R. and Ramamoorthy, A., 2014, "Differences between Amyloid-${\beta}$ Aggregation in Solution and on the Membrane: Insights into Elucidation of the Mechanistic Details of Alzheimer's Disease," Chemical Society Reviews, Vol. 43, No. 19, pp. 6692-6700. https://doi.org/10.1039/C3CS60431D
  9. Xu, Z., Paparcone, R. and Buehler, M. J., 2010, "Alzheimer's A(1-40) Amyloid Fibrils Feature Sizedependent Mechanical Properties," Biophysical Journal, Vol. 98, No. 10, pp. 2053-2062. https://doi.org/10.1016/j.bpj.2009.12.4317
  10. Lee, M., Baek, I., Chang, H. J., Yoon, G. and Na, S., 2014, "The Bond Survival Time Variation of Polymorphic Amyloid Fibrils in the Mechanical Insight," Chemical Physics Letters, Vol. 600, pp. 68-72. https://doi.org/10.1016/j.cplett.2014.03.043
  11. Ndlovu, H., Ashcroft, A. E., Radford, S. E. and Harris, S. A., 2013, "Molecular Dynamics Simulations of Mechanical Failure in Polymorphic Arrangements of Amyloid Fibrils Containing Structural Defects," Beilstein Journal of Nanotechnology, Vol. 4, No. 1, pp. 429-440. https://doi.org/10.3762/bjnano.4.50
  12. Ndlovu, H., Ashcroft, A. E., Radford, S. E. and Harris, S.A., 2012, "Effect of Sequence Variation on the Mechanical Response of Amyloid Fibrils Probed by Steered Molecular Dynamics Simulation," Biophysical Journal, Vol. 102, No. 3, pp. 587-596. https://doi.org/10.1016/j.bpj.2011.12.047
  13. Solar, M. and Buehler, M. J., 2014, "Tensile Deformation and Failure of Amyloid and Amyloid-like Protein Fibrils," Nanotechnology, Vol. 25, No. 10, Article ID105703.
  14. Yoon, G., Kwak, J., Kim, J. I., Na, S. and Eom, K., 2011, "Mechanical Characterization of Amyloid Fibrils using Coarse-grained Normal Mode Analysis," Advanced Functional Materials, Vol. 21, No. 18, pp. 3454-3463. https://doi.org/10.1002/adfm.201002493
  15. Yoon, G., Kim, Y. K., Eom, K. and Na, S., 2013, "Relationship between Disease-specific Structures of Amyloid Fibrils and Their Mechanical Properties," Applied Physics Letters, Vol. 102, Article ID 011914.
  16. Kim, J. I., Lee, M., Baek, I., Yoon, G. and Na, S., 2014, "The Mechanical Response of hIAPP Nanowires Based on Different Bending 10 Journal of Nanomaterials Direction Simulations," Physical Chemistry Chemical Physics, Vol. 16, No. 34, pp. 18493-18500. https://doi.org/10.1039/C4CP02494J
  17. Collins, S. R., Douglass, A., Vale, R. D. and Weissman, J. S., 2004, "Mechanism of Prion Propagation: Amyloid Growth Occurs by Monomer Addition," PLoS Biology, Vol. 2, article e321.
  18. Smith, J. F., Knowles, T. P. J., Dobson, C. M., MacPhee, C. E. and Welland, M. E., 2006, "Characterization of the Nanoscale Properties of Individual Amyloid Fibrils," Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 43, pp. 15806-15811. https://doi.org/10.1073/pnas.0604035103
  19. Peralta, M. D. R., Karsai, A., Ngo, A., Sierra, C., Fong, K. T., Hayre, N. R., Mirzaee, N., Ravikumar, K. M., Kluber, A. J., Chen, X., Liu, G.-y., Toney, M. D., Singh, R. R. and Cox, D. L., Engineering Amyloid Fibrils from ${\beta}$-Solenoid Proteins for Biomaterials Applications. ACS Nano 2015, 9 (1), pp. 449-463. https://doi.org/10.1021/nn5056089
  20. Choi, H., Chang, H. J. and Shin, Y., et al., 2015, "The Molecularmechanism of Conformational Changes of the Triplet Prion Fibrils for pH," RSC Advances, Vol. 5, No. 61, pp. 49263-49269. https://doi.org/10.1039/C5RA08015K
  21. Chang, H. J., Baek, I., Lee, M. and Na, S., 2015, "Influence of Aromatic Residues on Thematerial Characteristics of A${\beta}$ Amyloid Protofibrils at the Atomic Scale," ChemPhysChem, Vol. 16, No. 11, pp. 2403-2414. https://doi.org/10.1002/cphc.201500244
  22. Paparcone, R., Pires, M. A. and Buehler, M. J., 2010, "Mutations Alter the Geometry and Mechanical Properties of Alzheimer's A(1-40) Amyloid Fibrils," Biochemistry, Vol. 49, No. 41, pp. 8967-8977. https://doi.org/10.1021/bi100953t
  23. Lee, M., Baek, I., Choi, H., Kim, J. I. and Na, S., 2015, "Effects of Lysine Residues on Structural Charac-teristics and Stability of Tau Proteins," Biochemical and Biophysical Research Communications, Vol. 466, No. 3, pp. 486-492. https://doi.org/10.1016/j.bbrc.2015.09.056
  24. Yoon, G., Lee, M., Kim, J. I., Na, S. and Eom, K., 2014, "Role of Sequence and Structural Polymorphism on the Mechanical Properties of Amyloid Fibrils," PLoS ONE, Vol. 9, No. 2, Article IDe88502.
  25. Lee, M., Chang, H. J. and Kim, D., et al., 2015, "Relationship between Structural Composition and Material Properties of Polymorphic hIAPP Fibrils," Biophysical Chemistry, Vol. 199, pp. 1-8. https://doi.org/10.1016/j.bpc.2015.02.002
  26. Porrini, M., Zachariae, U., Barran, P. E. and MacPhee, C. E., 2013, "Effect of Protonation State on the Stability of Amyloid Oligomers Assembled from TTR(105-115)," The Journal of Physical Chemistry Letters, Vol. 4, No. 8, pp. 1233-1238. https://doi.org/10.1021/jz400372u
  27. Andreasen, M., Skeby, K. K. and Zhang, S., et al., 2014, "The Importance of Being Capped: Terminal Capping of an Amyloidogenic Peptide Affects Fibrillation Propensity and Fibril Morphology," Biochemistry, Vol. 53, No. 44, pp. 6968-6980. https://doi.org/10.1021/bi500674u
  28. Tao, K., Wang, J. and Zhouet, P. et al., 2011, "Selfassembly of ShortA(16-22) Peptides: Effect of Terminal Capping and the Role of Electrostatic Interaction," Langmuir, Vol. 27, No. 6, pp. 2723-2730. https://doi.org/10.1021/la1034273
  29. Castelletto, V., Hamley, I. W. and Cenker, C. et al., 2011, "Influence of End-capping on the Self-assembly of Model Amyloid Peptide Fragments," Journal of Physical Chemistry B, Vol. 115, No. 9, pp. 2107-2116. https://doi.org/10.1021/jp111168s
  30. Rapezzi, C., Quarta, C. C. and Riva, L., et al., 2010, "Transthyretin-related Amyloidoses and the Heart: a Clinical Overview," Nature Reviews Cardiology, Vol. 7, No. 7, pp. 398-408. https://doi.org/10.1038/nrcardio.2010.67
  31. Dungu, J. N., Anderson, L. J., Whelan, C. J. and Hawkins, P. N., 2012, "Cardiac Transthyretin Amyloidosis," Heart, Vol. 98, No. 21, pp. 1546-1554. https://doi.org/10.1136/heartjnl-2012-301924
  32. Humphrey, W., Dalke, A. and Schulten, K., 1996, "VMD: Visual Molecular Dynamics," Journal of Molecular Graphics, Vol. 14, No. 1, pp. 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  33. Fitzpatrick, A. W. P., Debelouchina, G. T. and Bayro, M. J., et al., 2013, "Atomic Structure and Hierarchical Assembly of a Cross-${\beta}$ Amyloid Fibril," Proceedings of the National Academy of Sciences of the United States of America, Vol. 110, No. 14, pp. 5468-5473. https://doi.org/10.1073/pnas.1219476110
  34. Jaroniec, C. P., MacPhee, C. E., Bajaj, V. S., McMahon, M. T., Dobson, C. M. and Griffin, R. G., 2004, "High-resolution Molecular Structure of a Peptide in an Amyloid Fibril Determined by Magic Angle Spinning NMR Spectroscopy," Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, No. 3, pp. 711-716. https://doi.org/10.1073/pnas.0304849101
  35. Jaroniec, C. P., MacPhee, C. E., Astrof, N. S., Dobson, C. M. and Griffin, R. G., 2002, "Molecular Conformation of a Peptide Fragment of Transthyretin in an Amyloid Fibril," Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 26, pp. 16748-16753. https://doi.org/10.1073/pnas.252625999
  36. Phillips, J. C., Braun, R., Wang, W., et al., 2005, "Scalable Molecular Dynamics with NAMD," Journal of Computational Chemistry, Vol. 26, No. 16, pp. 1781-1802. https://doi.org/10.1002/jcc.20289
  37. Choi, B., Yoon, G., Lee, S. W. and Eom, K., 2015, "Mechanical Deformation Mechanisms and Properties of Amyloid Fibrils," Physical Chemistry Chemical Physics, Vol. 17, No. 2, pp. 1379-1389. https://doi.org/10.1039/C4CP03804E
  38. Paparcone, R. and Buehler, M. J., 2011, "Failure of A(1-40) Amyloid Fibrils under Tensile Loading," Biomaterials, Vol. 32, No. 13, pp. 3367-3374. https://doi.org/10.1016/j.biomaterials.2010.11.066
  39. Paparcone, R., Keten, S. and Buehler, M. J., 2010, "Atomistic Simulation of Nanomechanical Properties of Alzheimer's AΒ(1-40) Amyloid Fibrils under Compressive and Tensile Loading," Journal of Biomechanics, Vol. 43, No. 6, pp. 1196-1201. https://doi.org/10.1016/j.jbiomech.2009.11.026
  40. Paparcone, R., Keten, S. and Buehler, M., 2009, "Amyloid Nanofibrils under Compressive Loading," Journal of Biomechanics, Vol. 43, pp. 1196-1201.
  41. Meersman, F., Cabrera, R. Q., McMillan, P. F. and Dmitriev, V., 2011, "Structural and Mechanical Properties of TTR105-115 Amyloid Fibrils from Compression Experiments," Biophysical Journal, Vol. 100, No. 1, pp. 193-197. https://doi.org/10.1016/j.bpj.2010.11.052
  42. Cherny, I. and Gazit, E., 2008, "Amyloids: Not Only Pathological Agents but also Ordered Nanomaterials," Angewandte Chemie - International Edition, Vol. 47, No. 22, pp. 4062-4069. https://doi.org/10.1002/anie.200703133
  43. Lee, M. and Na, S., 2016, "End Capping Alters the Structural Characteristics and Mechanical Properties of Transthyretin (105-115) Amyloid Protofibrils," ChemPhysChem, Vol. 17, No. 3, pp. 425-432. https://doi.org/10.1002/cphc.201500945
  44. Lee, M., Choi, H. and Na, S., Effects of End- Terminal Capping on Transthyretin (105-115) Amyloid Protofibrils Using Steered Molecular Dynamics. Journal of Nanomaterials 2016, 2016, 10.