DOI QR코드

DOI QR Code

고속도로 합류점 주행을 위한 강건 모델 예측 기법 기반 자율주행 차선 변경 알고리즘 개발

Automated Driving Lane Change Algorithm Based on Robust Model Predictive Control for Merge Situations on Highway Intersections

  • 채흥석 (서울대학교 기계항공공학부) ;
  • 정용환 (서울대학교 기계항공공학부) ;
  • 민경찬 (교통안전공단 자동차안전연구원) ;
  • 이명수 (교통안전공단 자동차안전연구원) ;
  • 이경수 (서울대학교 기계항공공학부)
  • Chae, Heongseok (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Jeong, Yonghwan (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Min, Kyongchan (Korea Automobile Testing & Research Institute, Korea Transportation Safety Authority) ;
  • Lee, Myungsu (Korea Automobile Testing & Research Institute, Korea Transportation Safety Authority) ;
  • Yi, Kyongsu (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 투고 : 2016.07.28
  • 심사 : 2017.03.15
  • 발행 : 2017.07.01

초록

본 논문에서는 고속도로의 합류지점 상황에서 자율주행을 위한 운전 모드 결정 알고리즘의 개발 및 평가를 진행하였다. 합류 상황을 위한 자율주행 알고리즘 개발에 있어 적절하게 합류를 결정하는 운전 모드 결정이 필수적이다. 운전자 모드는 총 2가지로 차선 유지, 차선 변경(합류)이다. 합류 모드 결정은 주변 차량의 정보 및 합류 차선에 남은 거리를 기반으로 결정된다. 합류 모드 결정 알고리즘에서는 합류 가능 여부를 판단하고 합류가 가능할 때, 안전하고 빠르게 합류하기 위한 최적의 위치를 찾는다. 안전 주행 영역은 주변 차량의 정보 및 주행 모드를 기반으로 정의된다. 안전 주행 영역으로 자율주행 차량을 유지하기 위한 조향각과 종방향 가속도를 얻기 위해 여러 제한 조건이 더해진 강건 모델 예측기법이 사용되었다. 본 논문에서 제안된 알고리즘은 컴퓨터 시뮬레이션을 이용해 검증되었다.

This paper describes the design and evaluation of a driving mode decision algorithm for automated driving for merge situations on highways. For the development of a highly automated driving control algorithm for merge situations, the driving mode decision is crucial for merging appropriately. There are two driving modes: lane keeping and lane changing (merging). The merge mode decision is determined based on the state of the surrounding vehicles and the remaining length of the merge lane. In the merge mode decision algorithm, merge possibility and the desired merge position are decided to change the lane safely and quickly. A safety driving envelope is defined based on the desired driving mode using the information on the surrounding vehicles' behaviors. To obtain the desired steering angle and longitudinal acceleration for maintaining the subject vehicle in the safe driving envelope, a motion planning controller is designed using model predictive control (MPC), with constraints that are decided considering the vehicle dynamics, safe driving envelope, and actuator limit. The proposed control algorithm has been evaluated via computer simulation studies.

키워드

참고문헌

  1. Jeong, Y., 2015, "An Evaluation Scenario of Safety Performance for Extraordinary Service Permission of Autonomous Vehicle," KASA Spring Conference Proceedings.
  2. Bishop, R., 2000, "A Survey of Intelligent Vehicle Applications Worldwide," IEEE Intelligent Vehicles Symposium.
  3. Kim, B., Yi, K., Jeong, C. and Kim, J., 2013, "Probabilistic States Prediction Algorithm using Multisensor Fusion and Application to Smart Cruise Control Systems," IEEE Intelligent Vehicles Symposium.
  4. Seo, J. and Yi, K., 2015, "Robust Mode Predictive Control for Lane Change of Automated Driving Vehicles," SAE Technical Paper, No. 2015-01-0317.
  5. Mayne, D., Seron, M. and Rakovic, S., 2005, "Robust Model Predictive Control of Constrained Linear Systems with Bounded Disturbances," Automatica, 41:219-224. https://doi.org/10.1016/j.automatica.2004.08.019
  6. Li, S., Li, K., Rajamani, R. and Wang, J., 2011, "Model Predictive Multi-Objective Vehicluar Adaptive Cruise Control," IEEE Transactions on Control System Technology, 19(3).
  7. Rajamani, R., 2006, Vehicle Dynamics and Control, New York, Springer.
  8. Moon, S. and Yi, K., 2009, "Design, Tuning, and Evaluation of a Full-range Adaptive Cruise Control System with Collision Avoidance," Control Engineering Practice, Vol. 17, No. 4, pp. 442-455. https://doi.org/10.1016/j.conengprac.2008.09.006
  9. Kim, D., Yoon, J. and Yi, K., 2013, "Steering and Cruise Control for Autonomous Driving in Stop-and- Go Traffic Situations," KSME Spring Conference Proceedings.