DOI QR코드

DOI QR Code

미생물에 의한 카로티노이드 생산; 생물학적 기능성 및 상업적 적용

Microbial Production of Carotenoids: Biological Functions and Commercial Applications

  • Seo, Yong Bae (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University)
  • 투고 : 2017.06.20
  • 심사 : 2017.06.27
  • 발행 : 2017.06.30

초록

Carotenoid는 isoprenoid 화합물로써 3-15개의 이중 결합이 결합된 긴 polyene 구조를 가지며, 이러한 구조적 특성에 의해 최대 흡수파장대가 결정된다. 카로티노이드는 전형적으로 $C_{40}$ 탄화수소 골격으로 이루어져 있으며, 그 중에는 산소를 포함하고 있는 작용기로 인해 cyclic 또는 acyclic의 크산토필을 형성하기도 한다. 현재 대부분의 세계 시장을 점유하고 있는 합성 카로티노이드의 대안을 찾기 위해 천연물(식물, 미생물, 갑각류 부산물) 유래의 카로티노이드를 생산 및 활용하기 위한 연구가 진행되고 있다. 그럼에도 불구하고, 오직 몇몇 카로티노이드(${\beta}-carotene$, lycopene, astaxanthin, canthaxanthin, lutein)만이 천연물 소재에서 분리 또는 발효되어 상업적으로 이용된다. 카로티노이드가 만성질환 예방 및 발암 억제 작용에 효과가 있음이 밝혀지면서 카로티노이드 시장이 급격히 증가하였다. 사료, 기능성 식품 및 의약품 소재로써의 카로티노이드의 중요성이 증가함에 따라 카로티노이드 생산법에 대한 연구가 진행되었으며, 이러한 관점에서 미생물 및 식물을 이용한 대사공학적 접근법에 의한 카로티노이드 대량생산법을 개발하게 되었다. 본 논문에서는 생산 균주, 대사공학 적용에 따른 대량 생산 방법, 생물학적 작용기전 및 산업적 이용을 중심으로 설명하고자 한다.

Carotenoids are isoprenoids with a long polyene chain containing 3 to 15 conjugated double bonds, which determines their absorption spectrum. They typically consist of a $C_{40}$ hydrocarbon backbone often modified by different oxygen-containing functional groups, to yield cyclic or acyclic xanthophylls. Much work has also been focused on the identification, production, and utilization of natural sources of carotenoid (plants, microorganisms and crustacean by-products) as an alternative to the synthetic pigment which currently covers most of the world markets. Nevertheless, only a few carotenoids (${\beta}-carotene$, lycopene, astaxanthin, canthaxanthin, and lutein) can be produced commercially by fermentation or isolation from the small number of abundant natural sources. The market and demand for carotenoids is anticipated to increase dramatically with the discovery that carotenoids exhibit significant anti-carcinogenic activities and play an important role in the prevention of chronic diseases. The increasing importance of carotenoids in the feed, nutraceutical food and pharmaceutical markets has renewed by efforts to find ways of producing additional carotenoid structures in useful quantities. Because microorganisms and plants synthesize hundreds of different complex chemical carotenoid structures and a number of carotenoid biosynthetic pathways have been elucidated on a molecular level, metabolic and genetic engineering of microorganisms can provide a means towards economic production of carotenoid structures that are otherwise inaccessible. The aim of this article is to review our current understanding of carotenoid formation, to explain the perceived benefits of carotenoid in the diet and review the efforts that have been made to increase carotenoid in certain microorganisms.

키워드

참고문헌

  1. Asker, D. and Ohta, Y. 1999. Production of canthaxanthin by extremely halophilic bacteria. J. Biosci. Bioeng. 88, 617-621. https://doi.org/10.1016/S1389-1723(00)87089-9
  2. Asker, D. and Ohta, Y. 2002. Haloferax alexandrinus sp. nov., an extremely halophilic canthaxanthin-producing archaeon from a solar saltern in Alexandria (Egypt). Int. J. Syst. Evol. Microbiol. 52, 729-738.
  3. Berzelius, J. J. 1837. Uber die gelbe Farbe der Blätter im Herbste. Ann. Pharm. 21, 257-262. https://doi.org/10.1002/jlac.18370210303
  4. Bhosale, P., Larson, A. J. and Bernstein, P. S. 2004. Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxanthin production from Flavobacterium multivorum. J. Appl. Microbiol. 96, 623-629. https://doi.org/10.1111/j.1365-2672.2004.02197.x
  5. Britton, G. 1995. Structure and properties of carotenoids in relation to function. FASEB J. 9, 1551-1558. https://doi.org/10.1096/fasebj.9.15.8529834
  6. Buzzini, P. 2001. Batch and fed-batch carotenoid production by Rhodotorula glutinis -Debaryomyces castellii co-cultures in corn syrup. J. App. Microbiol. 90, 843-847. https://doi.org/10.1046/j.1365-2672.2001.01319.x
  7. Cheng, J., Li, K., Yang, Z. B., Zhou, J. H. and Cen, K. 2016. Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress. Biosresour. Technol. 204, 49-54. https://doi.org/10.1016/j.biortech.2015.12.076
  8. Chen, J., Wang, Y., Benemann, J. R., Zhang, X., Hu, H. and Qin, S. 2016. Microalgal industry in China: challenges and prospects. J. Appl. Phycol. 28, 715-725. https://doi.org/10.1007/s10811-015-0720-4
  9. Chew, B. P., Park, J. S., Wong, M. W. and Wong, T. S. 1999. A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer Res. 19, 1849-4853
  10. Clark, P. E., Hall, M. C., Borden, L. S. Jr., Miller, A. A., Hu, J. J., Lee, W. R., Stindt, D., D'Agostino, R. Jr., Lovato, J., Harmon, M. and Torti, F. M. 2006. Phase I-II prospective dose-escalating trial of lycopene in patients with biochemical relapse of prostate cancer after definitive local therapy. Urology 67, 1257-1261. https://doi.org/10.1016/j.urology.2005.12.035
  11. D'Alessandro, E. B. and Filho, N. R. A. 2016. Concepts and studies on lipid and pigments of microalgae: A review. Renew. Sustain. Energy Rev. 58, 832-841. https://doi.org/10.1016/j.rser.2015.12.162
  12. Dannert, C. S. 2000. Engineering novel carotenoids in microorganisms. Curr. Opin. Biotechnol. 11, 255-261. https://doi.org/10.1016/S0958-1669(00)00093-8
  13. Diretto, G., Tavazza, R., Welsch, R., Pizzichini, D., Mourgues, F., Papacchioli, V., Beyer, P. and Giuliano, G. 2006. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol. 6, 13. https://doi.org/10.1186/1471-2229-6-13
  14. Iretto, G., Welsch, R., Tavazza, R., Mourgues, F., Pizzichini, D., Beyer, P. and Giuliano, G. 2007. Silencing of beta-carotene hydroxylase increase total carotenoid and beta-carotene in potato tubers. BMC Plant Biol. 7, 11. https://doi.org/10.1186/1471-2229-7-11
  15. Dufosse, L. 2006. Microbial production of food grade pigments. Food Technol. Biotechnol. 44, 313-321.
  16. Dufosse, L., Fouillaud, M., Caro, Y., Mapari, S. A. S. and Sutthiwong, N. 2014. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr. Opin. Biotechnol. 26, 56-61. https://doi.org/10.1016/j.copbio.2013.09.007
  17. Dundas, D. I. and Larsen, H. 1962. The physiological role of the carotenoid pigments of Halobacterium salinarum. Arch. Mikrobiol. 44, 233-239. https://doi.org/10.1007/BF00510943
  18. Enfissi, E. M. A., Fraser, P. D., Lois, L. M., Boronat, A., Schurch, W. and Bramley, P. M. 2005. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate- forming pathways for the production of health promoting isoprenoids in tomato. Plant Biotechnol. J. 3, 17-27
  19. Fang, C., Ku, K., Lee, M. and Su, N. 2010. Influence of nutritive factors on C50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Bioresour. Technol. 101, 6487-6493. https://doi.org/10.1016/j.biortech.2010.03.044
  20. Fraser, P. D. and Bramley, P. M. 2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43, 228-265. https://doi.org/10.1016/j.plipres.2003.10.002
  21. Gateau, H., Solymosi, K., Marchand, J. and Shoefs, B. 2016. Carotenoids of microalgae used in food industry and medicine. Mini Rev. Med. Chem. 16, 1-1.
  22. Giotta, L., Agostiano, A. and Italiano, F. 2006. Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 26, 1490-1499.
  23. Giovannucci, E., Rimm, E. B., Liu, Y., Stampfer, M. J. and Willett, W. C. 2002. A prospective study of tomato products, lycopene, and prostate cancer risk. J. Natl. Cancer Inst. 94, 391-398. https://doi.org/10.1093/jnci/94.5.391
  24. Giovannucci, E. 1999. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J. Natl. Cancer Inst. 91, 317-331. https://doi.org/10.1093/jnci/91.4.317
  25. Goodwin, T. W. 1980. Nature and distribution of carotenoids. Food Chem. 5, 3-13. https://doi.org/10.1016/0308-8146(80)90061-8
  26. Grant, W. D. and Larsen, H. 1989. Extremely halophilic archaea bacteria order Halobacteriales ord. nov., pp. 2216-2233. In: Staley, J. T., Bryant, M. P., Pfenning, N. and Holt, J. G. (eds.), Bergey's Manual of Systematic Bacteriology, vol. 3. The Williams and Wilkins Co., Baltimore.
  27. Gross, G. J., Hazen, S. L. and Lockwood, S. F. 2006. Seven day oral supplementation with Cardax (disodium disuccinate astaxanthin) provides significant cardioprotection and reduces oxidative stress in rats. Mol. Cell. Biochem. 283, 23-30. https://doi.org/10.1007/s11010-006-2217-6
  28. Heber, D. and Lu, Q. Y. 2002. Overview of mechanisms of action of lycopene. Exp. Biol. Med. (Maywood) 227, 920-923. https://doi.org/10.1177/153537020222701013
  29. Hu, Z. C., Zheng, Y. G., Wang, Z. and Shen, Y. C. 2006. pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enzyme Microb. Technol. 39, 586-590. https://doi.org/10.1016/j.enzmictec.2005.11.017
  30. Inbaraj, B. S., Chien, J. T. and Chen, B. H. 2006. Improved high performance liquid chromatographic method for determination of carotenoids in the microalga Chlorella pyrenoidosa. J. Chromatogr. A 1102, 193-199. https://doi.org/10.1016/j.chroma.2005.10.055
  31. Jatoi, A., Burch, P., Hillman, D., Vanyo, J. M., Dakhil, S., Nikcevich, D., Rowland, K., Morton, R., Flynn, P. J., Young, C. and Tan, W. 2007. North Central Cancer Treatment Group. A tomato-based, lycopene containing intervention for androgen-independent prostate cancer: results of a Phase II study from the North Central Cancer Treatment Group. Urology 69, 289-294. https://doi.org/10.1016/j.urology.2006.10.019
  32. Joshi, V. K., Attri, D., Bala, A. and Bhushan, S. 2003. Microbial pigments. Indian J. Biotechnol. 2, 362-369.
  33. Kim, J. W. 2008. Complementary Therapies and Cancer Treatment. J. Kor. Med. Assoc. 51, 427-434. https://doi.org/10.5124/jkma.2008.51.5.427
  34. Lee, J. H., Kim, Y. S., Choi, T. J., Lee, W. J. and Kim, Y. T. 2004. Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 54, 1699-702. https://doi.org/10.1099/ijs.0.63146-0
  35. Lee, J. H., Seo, Y. B. and Kim, Y. T. 2008. Enhanced production of astaxanthin by metabolic engineered isoprenoid pathway in Eshcerichia coli. J. Life Sci. 18, 1764-177. https://doi.org/10.5352/JLS.2008.18.12.1764
  36. Lee, J. H., Seo, Y. B., Jeong, S. Y., Nam, S. W. and Kim, Y. T. 2007. Functional analysis of combinations in astaxanthin biosynthesis genes from Paracoccus haeundaensis. Biotechnol. Bioprocess Eng. 54, 1699-1702.
  37. Lu, Y. M., Xiang, W. Z. and Wen, Y. H. 2011. Spirulina (Arthrospira) industry in Inner Mongolia of China: current and prospects. J. Appl. Phycol. 23, 265-269. https://doi.org/10.1007/s10811-010-9552-4
  38. Masetto, A., Flores-Cotera, L. B., Diaz, C., Langley, E. and Sanchez, S. 2001. Application of a complete factorial design for the production of zeaxanthin by Flavobacterium sp. J. Biosci. Bioeng. 92, 55-58. https://doi.org/10.1016/S1389-1723(01)80199-7
  39. Mukherjee, G. and Singh, S. K. 2011. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem. 46, 188-192. https://doi.org/10.1016/j.procbio.2010.08.006
  40. Na, E. J., Jang, H. H. and Kim, G. R. 2016. Review of Recent Studies and Research Analysis for Anti-oxidant and Antiaging Materials. Asian J. Beauty Cosmetol. 14, 481-491. https://doi.org/10.20402/ajbc.2016.0107
  41. Naveena, B. J., Altaf, M., Bhadriah, K. and Reddy, G. 2006. Selection of medium components by Plackett-Burman design for production of L (+) lactic acid by Lactobacillus amylophilus GV6 in SST using wheat bran. Bioresour. Technol. 96, 485-490.
  42. Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., Vernon, G., Wright, S. Y., Hinchliffe, E., Adams, J. L., Silverstone, A. L. and Drake, R. 2005. Improving the nutrional value of golden rice through increased pro-vitamin A content. Nat. Biotechnol. 23, 482-487. https://doi.org/10.1038/nbt1082
  43. Pan, X., Wang, B., Gerken, H. G., Lu, Y. and Ling, X. 2017. Proteomic analysis of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous in response to low carbon levels. Bioprocess Biosyst. Eng. 40, 1091-1100. https://doi.org/10.1007/s00449-017-1771-5
  44. Raja, R., Haemaiswarya, S. and Rengasamy, R. 2007. Exploitation of Dunaliella for ${\beta}$-carotene production. Appl. Microbiol. Biotechnol. 74, 517-523. https://doi.org/10.1007/s00253-006-0777-8
  45. Roukas, T., Mantzouridou, F. and Kotzekidou, P. 2002. Effect of the aeration rate and agitation speed on ${\beta}$-carotene production and morphology of Blakeslea trispora in a stirred tank reactor: mathematical modeling. Biochem. Eng. J. 10, 123-135. https://doi.org/10.1016/S1369-703X(01)00166-8
  46. Schaub, P., Al-Babili, S., Drake, R. and Beyer, P. 2005. Why is golden rice golden (yellow) instead of red? Plant Physiol. 138, 441-450 https://doi.org/10.1104/pp.104.057927
  47. Seo, Y. B., Kim, D. E., Kim, G. D., Kim, H. W., Nam, S. W., Kim, Y. T. and Lee, J. H. 2009. Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 59, 2769-2972. https://doi.org/10.1099/ijs.0.008482-0
  48. Seo, Y. B., Jeong, T. H., Choi, S. S., Lim, H. K. and Kim, G. D. 2017. Enhanced Production of Astaxanthin in Paracoccus haeundaensis Strain by Physical and Chemical Mutagenesis. J. Life Sci. 27, 339-345. https://doi.org/10.5352/JLS.2017.27.3.339
  49. Shewmaker, C. K., Sheehy, J. A., Daley, M., Colburn, S. and Ke, D. Y. 1999. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J. 20, 401-412. https://doi.org/10.1046/j.1365-313x.1999.00611.x
  50. Siler, U., Barella, L., Spitzer, V., Schnorr, J., Lein, M., Goralczyk, R. and Wertz, K. 2004. Lycopene and vitamin E interfere with autocrine/paracrine loops in the dunning prostate cancer model. FASEB J. 14, 1-23.
  51. Stahl, W. and Sies, H. 1996. Lycopene: a biologically important carotenoid for humans. Arch. Biochem. Biophys. 336, 1-9. https://doi.org/10.1006/abbi.1996.0525
  52. Suh, J. T., Choi, E. Y., Yoo, D. L., Kim, K. D., Lee, J. N., Hong, S. Y., Kim, S. J., Nam, J. H., Han, H. M. and Kim, M. J. 2015. Comparative study of biological activities at different harvesting times and new varieties for highland culture of Gom-chwi. Kor. J. Plant Res. 28, 391-399. https://doi.org/10.7732/kjpr.2015.28.4.391
  53. Tanaka, T., Makita, H., Ohnishi, M., Mori, H., Satoh, K. and Hara, A. 1995. Chemoprevention of oral carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxanthin. Cancer Res. 55, 4059-4064
  54. Tswett, M. 1911. Uber den makro und mikrochemischen Nachweis des Carotins. Ber. Dtsc. Bot. Ges. 29, 630-636
  55. Wackenroder, H. W. F. 1831. Uber das oleum radicis Dauci aetherum, das Carotin, den Carotenzucker und den officinellen succus Dauci; so wie auch uber das Mannit,welches in dem Mohrensafte durch eine besondere Art der Gahrung gebildet wird. Geigers Mag. Pharm. 33, 144-172.
  56. Wang, N., Guan, B., Kong, Q., Sun, H., Geng, Z. and Duan, L. 2016. Enhancement of astaxanthin production from Haematococcus pluvialis mutants by three-stage mutagenesis breeding. J. Biotechnol. 236, 71-77. https://doi.org/10.1016/j.jbiotec.2016.08.009
  57. Ye, X., AI-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P. and Potrykus, I. 2000. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303-305. https://doi.org/10.1126/science.287.5451.303
  58. Zhang, Y., He, M., Zou, S., Fei, C., Yan, Y., Zheng, H., Rajper, A. A. and Wang, C. 2016. Breeding of high biomass and lipid producing Desmodesmus sp. by Ethylmethane sulfonate- induced mutation. Bioresour. Technol. 207, 268-275. https://doi.org/10.1016/j.biortech.2016.01.120
  59. Zhao, Y., Shang, M., Xu, J. W., Zhao, P., Li, T. and Yu, X. 2015. Enhanced astaxanthin production from a novel strain of Haematococcus pluvialis using fulvic acid. Process. Biochem. 50, 2072-2077. https://doi.org/10.1016/j.procbio.2015.09.004
  60. Zoz, L., Carvalho, J. C., Soccol, V. T., Casagrande, T. C. and Cardoso, L. 2015. Torularhodin and torulene: Bioproduction, properties and prospective applications in food and cosmetics - a Review. Braz. Arch. Biol. Technol. 58, 278-288. https://doi.org/10.1590/S1516-8913201400152