DOI QR코드

DOI QR Code

The Effect of Ionizing Radiation on the Ultrastructural Changes and Mechanism on the Cytoplasmic Organelles

전리방사선이 세포질 소기관의 미세구조변화와 기전에 미치는 영향

  • Lee, Moo Seok (Department of Nuclear Medicine, Pusan National University Hospital) ;
  • Lee, Jong Kyu (Department of Physics, Pukyong National University) ;
  • Nam, Ji Ho (Department of Radiation Oncology, Pusan National University Yangsan Hospital) ;
  • Ha, Tae Yeong (Department of Radiation Oncology, Pusan National University Yangsan Hospital) ;
  • Lim, Yeong Hyeon (Department of Nuclear Medicine, Research Institute for Convergence of biomedical science and technology Pusan National University Yangsan Hospital) ;
  • Kil, Sang Hyeong (Department of Nuclear Medicine, Research Institute for Convergence of biomedical science and technology Pusan National University Yangsan Hospital)
  • 이무석 (부산대학교병원 핵의학과) ;
  • 이종규 (부경대학교 물리학과) ;
  • 남지호 (양산부산대학교병원 방사선종양학과) ;
  • 하태영 (양산부산대학교병원 방사선종양학과) ;
  • 임영현 (양산부산대학교병원 핵의학과) ;
  • 길상형 (양산부산대학교병원 핵의학과)
  • Received : 2017.06.08
  • Accepted : 2017.06.28
  • Published : 2017.06.30

Abstract

Ionizing radiation is enough energy to interact with matter to remove orbital electrons, neutrons, and protons in the atom. Ionizing radiation like this leads to oxidizing metabolism that alter molecular structure through direct and indirect interactions of radiation with the deoxyribonucleic acid in the nucleus and cytoplasmic organelles or via products of cytoplasm radiolysis. These ionization can result in tissue damage and disruption of cellular function at the molecular level. Consequently, ionizing radiation-induced modifications of ion channels and transporters have been reported. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Also, Reactive oxygen species formed on the effect of ionizing radiation can get across into neighboring cells through the cell junctions that are responsible for intercellular chemical communication, and may there bring about changes characteristic to radiation damage. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. This paper briefly reviewed reports on ionization radiation effects on cellular level that support the concept of radiation biology. A better understanding of the biological effects of ionizing radiation will lead to better use of and better protection from radiation.

전리방사선은 물질과 상호작용하여 원자내의 중성자나 양성자, 궤도전자를 충분히 제거시킬 수 있는 에너지이다. 이와 같은 전리방사선은 DNA이나 세포질 소기관과 세포질의 방사선 분해 생성물을 통해 직접적, 간접적으로 상호작용하여 분자구조를 변화시키는 산화적 대사를 일으킨다. 이러한 전리 현상은 분자수준에서 조직을 손상시키고, 세포 기능을 파괴할 수 있다. 따라서, 전리방사선에 의해 유도된 이온채널과 수송 변형이 보고되고 있다. 이러한 현상이 항상성을 유지하기 위한 생화학적 과정을 무너뜨리면, 유도된 생물학적 변화가 지속되고 후대로 영향을 미친다. 또한, 전리방사선의 영향으로 형성된 활성산소는 세포연접을 통해 인접세포로 퍼져 나갈 수 있다. 방사선량, 선량률, 선질에 따라 이러한 메커니즘이 충분히 방어할 수도 있고 그렇지 않을 수도 있다. 본 총설에서는 방사선생물학의 개념을 뒷받침하는 전리방사선의 세포수준에서 생물학적 효과에 대한 보고서를 간략히 알아보았다. 전리방사선의 생물학적 효과를 잘 이해하면 방사선을 잘 이용할 수 있고, 방사선피폭으로부터 더 나은 방호를 할 수 있을 것이다.

Keywords

References

  1. Ames, B. N. 1989. Endogenous DNA damage as related to cancer and aging. Mutat. Res. 214, 41-46. https://doi.org/10.1016/0027-5107(89)90196-6
  2. Ames, B. N. 1989. Endogenous oxidative DNA damage, aging, and cancer. Free Radic. Res. Commun. 7, 121-128. https://doi.org/10.3109/10715768909087933
  3. Amundson, S. A., Bittner, M. and Fornace, A. J. 2003. Functional genomics as a window on radiation stress signaling. Oncogene 22, 5828-5833. https://doi.org/10.1038/sj.onc.1206681
  4. Attardi, G. and Schatz, G. 1988. Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4, 289-331. https://doi.org/10.1146/annurev.cb.04.110188.001445
  5. Azzam, E. I., de Toledo, S. M. and Little, J. B. 2003. Oxidative metabolism, gap junctions and the ionizing radiation- induced bystander effect. Oncogene 22, 7050-7057. https://doi.org/10.1038/sj.onc.1206961
  6. Azzam, E. I., Jay-Gerin, J. P. and Pain, D. 2012. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327, 48-60. https://doi.org/10.1016/j.canlet.2011.12.012
  7. Balda, M. S. and Matter, K. 1998. Tight junctions. J. Cell Sci. 111, 541-547.
  8. Balaban, R. S., Nemoto, S. and Finkel, T. 2005. Mitochondria, oxidants, and aging. Cell. 120, 483-495. https://doi.org/10.1016/j.cell.2005.02.001
  9. Baverstock, K. 2000. Radiation-induced genomic instability: a paradigm-breaking phenomenon and its relevance to environmentally induced cancer. Mutat. Res. 454, 89-109. https://doi.org/10.1016/S0027-5107(00)00100-7
  10. Bernhard, E. J., Maity, A., Muschel, R. J. and McKenna, W. G. 1995. Effects of ionizing radiation on cell cycle progression. Radiat. Environ. Biophys. 34, 79-83. https://doi.org/10.1007/BF01275210
  11. Bionda, C., Hadchity, E., Alphonse, G., Chapet, O., Rousson, R., Rodriguez-Lafrasse, C. and Ardail, D. 2007. Radioresistance of human carcinoma cells is correlated to a defect in raft membrane clustering. Free Radic. Biol. Med. 43, 681-694. https://doi.org/10.1016/j.freeradbiomed.2007.04.031
  12. Bolus, N. E. 2001. Basic review of radiation biology and terminology. J. Nucl. Med. Technol. 29, 67-73.
  13. Booher, R. N., Holman, P. S. and Fattaey, A. 1997. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J. Biol. Chem. 272, 22300-22306. https://doi.org/10.1074/jbc.272.35.22300
  14. Brateman, L. 1999. The AAPM/RSNA Physics Tutorial for Residents: Radiation Safety Considerations for Diagnostic Radiology Personnel 1. J. Digit. Imaging 19, 1037-1055.
  15. Buonanno, M., De Toledo, S. M. and Azzam, E. I. 2011. Increased frequency of spontaneous neoplastic transformation in progeny of bystander cells from cultures exposed to densely ionizing radiation. PloS One 6, e21540. https://doi.org/10.1371/journal.pone.0021540
  16. Buonanno, M., de Toledo, S. M., Pain, D. and Azzam, E. I. 2011. Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress. Radiat. Res. 175, 405-415. https://doi.org/10.1667/RR2461.1
  17. Calabrese, E. J. 2013. Origin of the linearity no threshold (LNT) dose-response concept. Arch. Toxicol. 87, 1621-1633. https://doi.org/10.1007/s00204-013-1104-7
  18. Corre, I., Guillonneau, M. and Paris, F. 2013. Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity. Int J. Mol. Sci. 14, 22678-22696. https://doi.org/10.3390/ijms141122678
  19. Cortopassi, G. A. and Arnheim, N. 1990. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 18, 6927-6933. https://doi.org/10.1093/nar/18.23.6927
  20. Cortopassi, G. A., Shibata, D., Soong, N. W. and Arnheim, N. 1992. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc. Natl. Acad. Sci. USA 89, 7370-7374. https://doi.org/10.1073/pnas.89.16.7370
  21. Crews, C. M. and Erikson, R. L. 1993. Extracellular signals and reversible protein phosphorylation: what to Mek of it all. Cell. 74, 215-217.
  22. Deckbar, D., Jeggo, P. A. and Lobrich, M. 2011. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit. Rev. Biochem. Mol. Biol. 46, 271-283. https://doi.org/10.3109/10409238.2011.575764
  23. Deshpande, A., Goodwin, E. H., Bailey, S. M., Marrone, B. L. and Lehnert, B. T. 1996. Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: Evidence for an extranuclear target. Radiat. Res. 145, 260-267. https://doi.org/10.2307/3578980
  24. Duchen, M. R. 2004. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Aspects Med. 25, 365-451. https://doi.org/10.1016/j.mam.2004.03.001
  25. Fernandez Silva, P., Enriquez, J. A. and Montoya, J. 2003. Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol. 88, 41-56. https://doi.org/10.1113/eph8802514
  26. Gerhard, G. S., Benko, F. A., Allen, R. G., Tresini, M., Kalbach, A., Cristofalo, V. J. and Gocke, C. D. 2002. Mitochondrial DNA mutation analysis in human skin fibroblasts from fetal, young, and old donors. Mech. Ageing Dev. 123, 155-166. https://doi.org/10.1016/S0047-6374(01)00328-1
  27. Gire, V. and Dulic, V. 2015. Senescence from G2 arrest, revisited. Cell Cycle 14, 297-304. https://doi.org/10.1080/15384101.2014.1000134
  28. Haimovitz-Friedman, A., Kan, C. C., Ehleiter, D., Persaud, R. S., McLoughlin, M., Fuks, Z. and Kolesnick, R. N. 1994. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med. 180, 525-535. https://doi.org/10.1084/jem.180.2.525
  29. Han, W. and Yu, K. N. 2009. Response of cells to ionizing radiation, pp. 204-262., Advances in biomedical sciences and engineering. Edited by SC Tjong. Bentham Science Publishers, Ltd.: Hong Kong, China.
  30. Harding, H. P., Calfon, M., Urano, F., Novoa, I. and Ron, D. 2002. Transcriptional and translational control in the mammalian unfolded protein response. Annu. Rev. Cell Dev. Biol. 18, 575-599. https://doi.org/10.1146/annurev.cellbio.18.011402.160624
  31. Hetz, C., Bernasconi, P., Fisher, J., Lee, A. H., Bassik, M. C., Antonsson, B. and Korsmeyer, S. J., et al. 2006. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with $IRE1{\alpha}$. Science 312, 572-576. https://doi.org/10.1126/science.1123480
  32. Hickman, A. W., Jaramillo, R. J., Lechner, J. F. and Johnson, N. F. 1994. ${\alpha}$-Particle-induced p53 protein expression in a rat lung epithelial cell strain. Cancer Res. 54, 5797-5800.
  33. Hirai, F., Motoori, S., Kakinuma, S., Tomita, K., Indo, H. P., Kato, H. and Ozawa, T., et al. 2004. Mitochondrial signal lacking manganese superoxide dismutase failed to prevent cell death by reoxygenation following hypoxia in a human pancreatic cancer cell line, KP4. Antioxid. Redox Signal. 6, 523-535. https://doi.org/10.1089/152308604773934288
  34. Hong, M., Xu, A., Zhou, H., Wu, L., Randers-Pehrson, G., Santella, R. M. and Hei, T. K., et al. 2010. Mechanism of genotoxicity induced by targeted cytoplasmic irradiation. Br. J. Cancer. 103, 1263-1268. https://doi.org/10.1038/sj.bjc.6605888
  35. Hynes, R. O. 1999. Cell adhesion: old and new questions. Trends Biochem. Sci. 24, M33-M37. https://doi.org/10.1016/S0968-0004(99)01479-6
  36. Jacobson, K. 2015. Measuring Biological Cell Damage Due to Ionizing Radiation. Honors theses. Paper 75. College of Saint Benedict and Saint John's University, Minnesota, United States.
  37. Jay-Gerin, J. P. and Ferradini, C. 2000. Are there protective enzymatic pathways to regulate high local nitric oxide (.NO) concentrations in cells under stress conditions? Biochimie. 82, 161-166. https://doi.org/10.1016/S0300-9084(00)00062-6
  38. Jin, P., Gu, Y. and Morgan, D. O. 1996. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 134, 963-970. https://doi.org/10.1083/jcb.134.4.963
  39. Kadhim, M., Salomaa, S., Wright, E., Hildebrandt, G., Belyakov, O. V., Prise, K. M. and Little, M. P. 2013. Non-targeted effects of ionising radiation-implications for low dose risk. Mutat. Res. Rev. Mutat. Res. 752, 84-98. https://doi.org/10.1016/j.mrrev.2012.12.001
  40. Kam, W. W. Y. and Banati, R. B. 2013. Effects of ionizing radiation on mitochondria. Free Radic. Biol. Med. 65, 607-619. https://doi.org/10.1016/j.freeradbiomed.2013.07.024
  41. Kam, W. W. Y., McNamara, A. L., Lake, V., Banos, C., Davies, J. B., Kuncic, Z. and Banati, R. B. 2013. Predicted ionisation in mitochondria and observed acute changes in the mitochondrial transcriptome after gamma irradiation: a Monte Carlo simulation and quantitative PCR study. Mitochondrion 13, 736-742. https://doi.org/10.1016/j.mito.2013.02.005
  42. Kasid, U., Suy, S., Dent, P. and Ray, S. 1996. Activation of Raf by ionizing radiation. Nature 382, 813. https://doi.org/10.1038/382813a0
  43. Kasper, M., Traub, O., Reimann, T., Bjermer, L., Grossmann, H., Müller, M. and Wenzel, K. W. 1996. Upregulation of gap junction protein connexin43 in alveolar epithelial cells of rats with radiation-induced pulmonary fibrosis. Histochem. Cell Biol. 106, 419-424. https://doi.org/10.1007/BF02473301
  44. K Hei, T., Zhou, H., Chai, Y., Ponnaiya, B. and N Ivanov, V. 2011. Radiation induced non-targeted response: mechanism and potential clinical implications. Curr. Mol. Pharmacol. 4, 96-105. https://doi.org/10.2174/1874467211104020096
  45. Kryston, T. B., Georgiev, A. B., Pissis, P. and Georgakilas, A. G. 2011. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 711, 193-201. https://doi.org/10.1016/j.mrfmmm.2010.12.016
  46. Larner, J. M., Lee, H. and Hamlin, J. L. 1996. S phase damage sensing checkpoints in mammalian cells. Cancer Surv. 29, 25-45.
  47. Larsen, N. B., Rasmussen, M. and Rasmussen, L. J. 2005. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5, 89-108. https://doi.org/10.1016/j.mito.2005.02.002
  48. LaVerne, J. A. 2004. Charged Particle and Photon Interactions with Matter, pp. 403-429, Marcel Dekker, Inc: Madison Avenue, NY, USA.
  49. Leach, J. K., Van Tuyle, G., Lin, P. S., Schmidt-Ullrich, R. and Mikkelsen, R. B. 2001. Ionizing radiation-induced, mitochondria- dependent generation of reactive oxygen/ nitrogen. Cancer Res. 61, 3894-3901.
  50. Lee, H. C., Pang, C. Y., Hsu, H. S. and Wei, Y. H. 1994. Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim. Biophys. Acta. 1226, 37-43. https://doi.org/10.1016/0925-4439(94)90056-6
  51. Lee, H. C., Yin, P. H., Yu, T. N., Chang, Y. D., Hsu, W. C., Kao, S. Y. and Wei, Y. H., et al. 2001. Accumulation of mitochondrial DNA deletions in human oral tissues-effects of betel quid chewing and oral cancer. Mutat Res Genet Toxicol. Environ. Mutagen. 493, 67-74. https://doi.org/10.1016/S1383-5718(01)00160-7
  52. Lin, J. H. C., Yang, J., Liu, S., Takano, T., Wang, X., Gao, Q. and Nedergaard, M., et al. 2003. Connexin mediates gap junction-independent resistance to cellular injury. J. Neurosci. 23, 430-441. https://doi.org/10.1523/JNEUROSCI.23-02-00430.2003
  53. Liu, C. S., Tsai, C. S., Kuo, C. L., Chen, H. W., Lii, C. K., Ma, Y. S. and Wei, Y. H. 2003. Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic. Res. 37, 1307-1317 https://doi.org/10.1080/10715760310001621342
  54. Liu, K., Kasper, M., Bierhaus, A., Langer, S., Muller, M. and Trott, K. R. 1997. Connexin 43 expression in normal and irradiated mouse skin. Radiat. Res. 147, 437-441. https://doi.org/10.2307/3579500
  55. Iliakis, G., Wang, Y. A., Guan, J. and Wang, H. 2003. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22, 5834-5847. https://doi.org/10.1038/sj.onc.1206682
  56. Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P. and Darnell, J. 1995. Molecular cell biology Vol. 3, pp. 817-819, Scientific American Books: NY, USA.
  57. Luckey, T. D. 1980. Hormesis with ionizing radiation, pp. 1- 122, CRC press, Inc: Boca Raton, FL, USA.
  58. Maity, A., McKenna, W. G. and Muschel, R. J. 1994. The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother Oncol. 31, 1-13. https://doi.org/10.1016/0167-8140(94)90408-1
  59. Malakhova, L., Bezlepkin, V. G., Antipova, V., Ushakova, T. Y., Fomenko, L., Sirota, N. and Gaziev, A. I. 2005. The increase in mitochondrial DNA copy number in the tissues of ${\gamma}$-irradiated mice. Cell. Mol. Biol. Lett. 10, 721.
  60. Matsumoto, M., Minami, M., Takeda, K., Sakao, Y. and Akira, S. 1996. Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells FEBS Lett. 395, 143-147. https://doi.org/10.1016/0014-5793(96)01016-2
  61. May, A. and Bohr, V. A. 2000. Gene-specific repair of ${\gamma}$- ray-induced DNA strand breaks in colon cancer cells: No coupling to transcription and no removal from the mitochondrial genome. Biochem. Biophys. Res. Commun. 269, 433-437. https://doi.org/10.1006/bbrc.2000.2264
  62. McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. and Holbrook, N. J. 2001. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249- 1259. https://doi.org/10.1128/MCB.21.4.1249-1259.2001
  63. Michel, S., Wanet, A., De Pauw, A., Rommelaere, G., Arnould, T. and Renard, P. 2012. Crosstalk between mitochondrial (dys) function and mitochondrial abundance. J. Cell. Physiol. 227, 2297-2310. https://doi.org/10.1002/jcp.23021
  64. Milhas, D., Clarke, C. J. and Hannun, Y. A. 2010. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett. 584, 1887-1894. https://doi.org/10.1016/j.febslet.2009.10.058
  65. Moretti, L., Cha, Y. I., Niermann, K. J. and Lu, B. 2007. Switch between apoptosis and autophagy: radiation-induced endoplasmic reticulum stress? Cell Cycle 6, 793-798. https://doi.org/10.4161/cc.6.7.4036
  66. Morgan, D. O. 1995. Principles of CDK regulation. Nature 374, 131. https://doi.org/10.1038/374131a0
  67. Morgan, W. F. and Sowa, M. B. 2007. Non-targeted bystander effects induced by ionizing radiation. Mutat. Res. 616, 159-164. https://doi.org/10.1016/j.mrfmmm.2006.11.009
  68. Mori, K., Kawahara, T., Yoshida, H., Yanagi, H. and Yura, T. 1996. Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic leucine zipper motif is required for the unfolded protein response pathway. Genes Cells 1, 803-817. https://doi.org/10.1046/j.1365-2443.1996.d01-274.x
  69. Morishima, N., Nakanishi, K., Tsuchiya, K., Shibata, T. and Seiwa, E. 2004. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J. Biol. Chem. 279, 50375-50381. https://doi.org/10.1074/jbc.M408493200
  70. Murphy, M. P. 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13. https://doi.org/10.1042/BJ20081386
  71. Nias, A. H. W. 1998. An introduction to radiobiology. pp.81-97, 2nd ed., John Wiley & Sons Ltd: Baffins Lane, Chichester, West Sussex PO19 1UD, England.
  72. Nishitoh, H., Saitoh, M., Mochida, Y., Takeda, K., Nakano, H., Rothe, M. and Ichijo, H., et al. 1998. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol. Cell. 2, 389-395. https://doi.org/10.1016/S1097-2765(00)80283-X
  73. Norbury, C. and Nurse, P. 1992. Animal cell cycles and their control. Annu. Rev. Biochem. 61, 441-468. https://doi.org/10.1146/annurev.bi.61.070192.002301
  74. Nugent, S., Mothersill, C. E., Seymour, C., McClean, B., Lyng, F. M. and Murphy, J. E. 2010. Altered mitochondrial function and genome frequency post exposure to ${\gamma}$-radiation and bystander factors. Int. J. Radiat. Biol. 86, 829-841. https://doi.org/10.3109/09553002.2010.486019
  75. Oberley, L. W. and Buettner, G. R. 1979. Role of superoxide dismutase in cancer: a review. Cancer Res. 39, 1141-1149.
  76. Ojima, M., Ishii, K., Hayashi, T. and Ito, A. 2000. Induction of radio-adaptive response in colony formation by low dose X-ray irradiation. Physiol. Chem. Phys. Med. NMR. 33, 41-48.
  77. Palikaras, K. and Tavernarakis, N. 2014. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56, 182-188. https://doi.org/10.1016/j.exger.2014.01.021
  78. Paunesku, T., Haley, B., Brooks, A. and Woloschak, G. E. 2017. Biological basis of radiation protection needs rejuvenation. Int. J. Radiat. Biol. 13, 1-8.
  79. Pawlik, T. M. and Keyomarsi, K. 2004. Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59, 928-942. https://doi.org/10.1016/j.ijrobp.2004.03.005
  80. Petkau, A. 1987. Role of superoxide dismutase in modification of radiation injury. Br. J. Cancer Suppl. 8, 87.
  81. Platzman, R. L. 1958. Radiation Biology and Medicine. Selected Reviews in the Life Sciences. pp. 15-72, Addison-Wesley Pub. Co: Boston, USA.
  82. Porvaznik, M. 1979. Tight junction disruption and recovery after sublethal ${\gamma}$ irradiation. Radiat. Res. 78, 233-250. https://doi.org/10.2307/3575041
  83. Prise, K. M. and O'sullivan, J. M. 2009. Radiation-induced bystander signalling in cancer therapy. Nat. Rev. Cancer 9, 351-360. https://doi.org/10.1038/nrc2603
  84. Prithivirajsingh, S., Story, M. D., Bergh, S. A., Geara, F. B., Kian Ang, K., Ismail, S. M. and Brock, W. A., et al. 2004. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett. 571, 227-232. https://doi.org/10.1016/j.febslet.2004.06.078
  85. Reisz, J. A., Bansal, N., Qian, J., Zhao, W. and Furdui, C. M. 2014. Effects of ionizing radiation on biological molecules - mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal. 21, 260-292. https://doi.org/10.1089/ars.2013.5489
  86. Richard, S. M., Bailliet, G., Paez, G. L., Bianchi, M. S., Peltomäki, P. and Bianchi, N. O. 2000. Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res. 60, 4231-4237.
  87. Richter, C., Park, J. W. and Ames, B. N. 1988. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85, 6465-6467. https://doi.org/10.1073/pnas.85.17.6465
  88. Sanche, L. 2009. Biological chemistry: Beyond radical thinking. Nature 461, 358-359. https://doi.org/10.1038/461358a
  89. Schmidt-Ullrich, R. K., Dent, P., Grant, S., Mikkelsen, R. B. and Valerie, K. 2000. Signal transduction and cellular radiation responses. Radiat. Res. 153, 245-257. https://doi.org/10.1667/0033-7587(2000)153[0245:STACRR]2.0.CO;2
  90. Shoffner, J. M., Lott, M. T., Voljavec, A. S., Soueidan, S. A., Costigan, D. A. and Wallace, D. C. 1989. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc. Natl. Acad. Sci. USA 86, 7952-7956. https://doi.org/10.1073/pnas.86.20.7952
  91. Schon, E. A., Rizzuto, R., Moraes, C. T., Nakase, H., Zeviani, M. and DiMauro, S. 1989. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 244, 346-350. https://doi.org/10.1126/science.2711184
  92. Sidrauski, C., Chapman, R. and Walter, P. 1998. The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol. 8, 245-249. https://doi.org/10.1016/S0962-8924(98)01267-7
  93. Simons, K. and Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387, 569. https://doi.org/10.1038/42408
  94. Sjostedt, S. and Bezak, E. 2010. Non-targeted effects of ionising radiation and radiotherapy. Australas Phys. Eng. Sci. Med. 33, 219-231. https://doi.org/10.1007/s13246-010-0030-8
  95. Somosy, Z., Bognar, G., Horvath, G. and Koteles, G. J. 2003. Role of nitric oxide, cAMP and cGMP in the radiation induced changes of tight junctions in Madin-Darby canine kidney cells. Cell. Mol. Biol. (Noisy-le-grand). 49, 59-63.
  96. Somosy, Z., Horvath, G., Bognar, G. and Koteles, G. 2003. Structural and functional changes of cell junctions on effect of ionizing radiation. Acta Biol. Szegediensis 47, 19-25.
  97. Somosy, Z., Horvath, G., Telbisz, A., Rez, G. and Palfia, Z. 2002. Morphological aspects of ionizing radiation response of small intestine. Micron 33, 167-178. https://doi.org/10.1016/S0968-4328(01)00013-0
  98. Somosy, Z. 2000. Radiation response of cell organelles. Micron 31, 165-181. https://doi.org/10.1016/S0968-4328(99)00083-9
  99. Spitz, D. R., Azzam, E. I., Li, J. J. and Gius, D. 2004. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev. 23, 311-322. https://doi.org/10.1023/B:CANC.0000031769.14728.bc
  100. Suy, S., Anderson, W. B., Dent, P., Chang, E. and Kasid, U. 1997. Association of Grb2 with Sos and Ras with Raf-1 upon gamma irradiation of breast cancer cells. Oncogene 15, 53-61. https://doi.org/10.1038/sj.onc.1201165
  101. Tamminga, J. and Kovalchuk, O. 2011. Role of DNA damage and epigenetic DNA methylation changes in radiation- induced genomic instability and bystander effects in germline in vivo. Curr. Mol. Pharmacol. 4, 115-125. https://doi.org/10.2174/1874467211104020115
  102. Thiagarajah, J. R., Gourmelon, P., Griffiths, N. M., Lebrun, F., Naftalin, R. J. and Pedley, K. C. 2000. Radiation induced cytochrome c release causes loss of rat colonic fluid absorption by damage to crypts and pericryptal myofibroblasts. Gut 47, 675-684. https://doi.org/10.1136/gut.47.5.675
  103. Wang, L., Kuwahara, Y., Li, L., Baba, T., Shin, R. W., Ohkubo, Y. and Fukumoto, M., et al. 2007. Analysis of Common Deletion (CD) and a novel deletion of mitochondrial DNA induced by ionizing radiation. Int. J. Radiat. Biol. 83, 433-442. https://doi.org/10.1080/09553000701370878
  104. Wu, J., Harrison, J. K., Dent, P., Lynch, K. R., Weber, M. J. and Sturgill, T. W. 1993. Identification and characterization of a new mammalian mitogen-activated protein kinase kinase, MKK2. Mol. Cell. Biol. 13, 4539-4548. https://doi.org/10.1128/MCB.13.8.4539
  105. Xu, Y., Krishnan, A., Wan, X. S., Majima, H., Yeh, C. C., Ludewig, G. and Clair, D. K. S. 1999. Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells. Oncogene 18, 93-102. https://doi.org/10.1038/sj.onc.1202265
  106. Yakes, F. M. and Van Houten, B. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 94, 514-519. https://doi.org/10.1073/pnas.94.2.514
  107. Yamamori, T., Sasagawa, T., Ichii, O., Hiyoshi, M., Bo, T., Yasui, H. and Inanami, O., et al. 2017. Analysis of the mechanism of radiation-induced upregulation of mitochondrial abundance in mouse fibroblasts. J. Radiat. Res. 58, 292-301.
  108. Yamashita, S., Taguchi, M., Baldacchino, G. and Katsumura, Y. 2010. Radiation chemistry of liquid water with heavy ions: steady-state and pulse radiolysis studies, pp. 325-354, Taylor & Francis: Boca Raton, NY, USA.
  109. Yorimitsu, T., Nair, U., Yang, Z. and Klionsky, D. J. 2006. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 30299-30304. https://doi.org/10.1074/jbc.M607007200
  110. Zhao, Y., Xue, Y., Oberley, T. D., Kiningham, K. K., Lin, S. M., Yen, H. C. and Clair, D. S., et al. 2001. Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model. Cancer Res. 61, 6082-6088.
  111. Zheng, C. F. and Guan, K. L. 1993. Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J. Biol. Chem. 268, 11435-11439.
  112. Zhou, X., Li, N., Wang, Y., Wang, Y., Zhang, X. and Zhang, H. 2011. Effects of X-irradiation on mitochondrial DNA damage and its supercoiling formation change. Mitochondrion 11, 886-892. https://doi.org/10.1016/j.mito.2011.07.005
  113. Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H. and Ron, D., et al. 1998. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982-995. https://doi.org/10.1101/gad.12.7.982