DOI QR코드

DOI QR Code

Bacillus sp. SW29-2의 분리 및 Colletotrichum coccodes에 대한 항진균 활성

Isolation of Bacillus sp. SW29-2 and Its Antifungal Activity against Colletotrichum coccodes

  • 투고 : 2016.12.16
  • 심사 : 2017.02.09
  • 발행 : 2017.06.30

초록

하수 슬러지로부터 감자 뿌리썩음병 및 토마토 탄저병을 유발하는 Colletotrichum coccodes에 대해 항진균 활성이 있는 세균을 분리하였다. 분리균의 partial 16S rRNA sequence는 Bacillus methylotrophicus CBMB205 및 Bacillus amyloliquefaciens subsp. plantarum FZB42와 각각 99%의 상동성을 보여주었다. 분리균은 neighbor-joining phylogenetic tree, BlastN 염기서열 분석, 형태학적 및 배양학적 특성에 따라 Bacillus sp. SW29-2로 동정하였다. 분리균 Baciilus sp. SW29-2는 B. methylotrophicus CBMB205 type strain과 비교시 4% 이상 NaCl에서 생육하는 것이외에 형태학적, 생리학적 특성이 모두 동일하였다. 분리은 호기성, Gram-양성, 내생포자를 형성하는 세균이었다. 실험한 $18-47^{\circ}C$(최적, 약 $38^{\circ}C$)의 온도범위에서, pH 3-9(최적, 약 6.0) 범위의 초기 배지 pH에서 모두 생육이 관찰되었다. Baciilus sp. SW29-2의 C. coccodes에 대한 생육저지환(직경)은 23 mm에서 29 mm의 범위이었다. 분리 세균은 또한 사과 푸른곰팡이병(penicillum rot disease)을 유발하는 Penicillium expansum에 대해 우수한 항진균 활성을 보여주었다. 현재까지, Bacillus속 세균의 C. coccodes에 대한 항균활성 연구는 파악할 수 없었다. 이 결과는 분리균 Bacillus sp. SW29-2가 식물 병원성 C. coccodes에 대해 생물학적 방제제로의 활용 가능성이 있으며, 추후, 식물병을 유발하는 다른 진균에 대해서 적용할 예정이다.

Antifungal bacterium against Colletotrichum coccodes causing black dot disease of potatoes and anthracnose of tomatoes was isolated from sewage sludge. The isolate showed a 99% sequence homology of partial 16S rRNA of Bacillus methylotrophicus CBMB205 and Bacillus amyloliquefaciens subsp. plantarum FZB42. The isolate was identified as Bacillus sp. SW29-2, using the neighbor-joining phylogenetic tree, BlastN sequence analysis, and morphological and cultural characteristics. Bacillus sp. SW29-2 is an aerobic, Gram-positive, endospore-forming bacterium, of which the morphological and physiological characteristics were the same as those of type strain B. lichniformis CBMB205, except for the cell growth of over 4% NaCl. The cell growth of the temperature and the initial pH of the medium was shown at $18-47^{\circ}C$ (opt. ca. $38^{\circ}C$) and 3-9 (opt. ca. 6.0), respectively. The inhibition size (diameter) of Bacillus sp. SW29-2 against four strains of C. coccodes ranged from 23 to 29 mm. Also, the isolate showed antifungal activity against penicillium rot-causing Penicillium expansum in apples. Thus far, any report on the antifungal activity of Baciilus spp. against C. coccodes has not been found. These results suggest that the Bacillus sp. SW29-2 isolate could be used as a possible biocontrol agent against C. coccodes, and further applied to other plant pathogenic fungi.

키워드

참고문헌

  1. Alvarez, F., Castro, M., Principe, A., Borioli, G., Fischer, S., Mori, G. and Jofre, E. 2011. The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J. Appl. Microbiol. 112, 159-174.
  2. Arrebola, E., Jacobos, R. and Korsten, L. 2009. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108, 386-395.
  3. Ben-Daniel, B., Bar-Zvi, D. and Tsror (Lahkim), L. 2009. An improved large-scale screening method for assessment of Colletotrichum coccodes aggressiveness using mature green tomatoes. Plant Phathol. 58, 497-503. https://doi.org/10.1111/j.1365-3059.2008.01989.x
  4. Dev Sharma, S. C., Shovon, M. S., Sarowar Jahan, M. G., Asaduzzaman, A. K. M,, Rahman, M. A., Biswas, K. K., Abe, N. and Roy, N. 2013. Antibacterial and cytotoxic activity of Bacillus methylotrophicus-SCS2012 isolated from soil. J. Microbiol. Biotechnol. Food Sci. 2, 2293-2307.
  5. Dillard, H. R. 1988. Influence of temperature, pH, osmotic potential, and fungicide sensitivity on germination of conidia and growth from sclerotia of Colletotrichum coccodes in vitro. Phytopathology 78, 1357-1361. https://doi.org/10.1094/Phyto-78-1357
  6. Jung, Y. H., No, H. K. and Park, C. S. 2014. Screening of microorganism producing chitosanase using trypan blue containing medium and characterization of chitosanase from Bacillus methylotrophicus CH1. J. Chitin Chitosan 19, 188-193.
  7. Kim, P. I. and Chung, K. C. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234, 177-183. https://doi.org/10.1111/j.1574-6968.2004.tb09530.x
  8. Lee, K. J., Park, S. H., Govrthanan, M., Hwang, P. H., Seo, Y. S., Cho, M., Lee, W. H., Lee, J. Y., Kamala-Kannan, S. and Oh, B. T. 2013. Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Materials Lett. 105, 128-131. https://doi.org/10.1016/j.matlet.2013.04.076
  9. Lee, N. R., Woo, G. Y., Jang, J. H., Lee, S. M., Go, T. H., Lee, H. S., Hwan, D. Y. and Son, H. J. 2013. Antioxidant production by Bacillus methylotrophicus isolated from chungkookjang, Korean traditional fermented food. J. Environ. Sci. Internatl. 22, 855-862. https://doi.org/10.5322/JESI.2013.22.7.855
  10. Lees, A. K. and Hilton, A. J. 2003. Black dot (Colletotrichum coccodes): an increasingly important disease of potato. Plant Pathol. 52, 3-12. https://doi.org/10.1046/j.1365-3059.2003.00793.x
  11. Madhaiyan, M., Poonguzhali, S., Kwon, S. W. and Sa, T. M. 2010. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 60, 2490-2495. https://doi.org/10.1099/ijs.0.015487-0
  12. Manasi, K., Bhagwat, M. K. and Datar, A. G. 2014. Antifungal activity of herbal extracts against plant pathogenic fungi. Arch. Phytopathol. Plant Protec. 47, 959-965. https://doi.org/10.1080/03235408.2013.826857
  13. Marais, L. 1990, Efficacy of fungicides against Colletotrichum coccodes on potato tubers, Potato Res. 33, 275-281. https://doi.org/10.1007/BF02358457
  14. Mehta, P., Walia, A., Kakkar, N. and Shirkot, C. K. 2014. Tricalcium phosphate solubilisation by new endophyte Bacillus methylotrophicus CKAM isolated from apple root endosphere and its plant growth-promoting activities. Acta Physiol. Plantarum 36, 2033-2045. https://doi.org/10.1007/s11738-014-1581-1
  15. Mukund, P., Belur, P. D. and Saidutta, M. B. 2014. Production of naringinase from a new soil isolate, Bacillus methylotrophicus: isolation, optimization and scale-up studies. Prepar. Biochem. Biotechnol. 44, 146-209. https://doi.org/10.1080/10826068.2013.797910
  16. Niu, Q., Zhang, G., Zhang, L., Ma, Y., Shi, Q. and Fu, W. 2015. Purification and characterization of a thermophilic 1,3-1,4-${\beta}$-glucanase from Bacillus methylotrophicus S2 from booklice. J. Biosci. Bioeng. 121, 503-508.
  17. Palaniyandi, S. A., Yang, S. H. and Suh, J. W. 2013. Extracellular proteases from Streptomyces phaeopurpureus ExoPro138 inhibit spore adhesion, germination and appressorium formation in Colletotrichum coccodes. J. Appl. Microbiol. 115, 207-217. https://doi.org/10.1111/jam.12212
  18. Park, K. S. and Kim, C. H. 1992. Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Kor. J. Plant Pathol. 8, 61-69.
  19. Peng, Y., Bo, J., Tao, Z., Mu, W., Miao, M. and Hua, Y. 2014. High-level production of poly(${\gamma}$-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus. Proc. Biochem. 50, 1359-5113.
  20. Shan, H., Zhao, M., Chen D., Cheng J., Li, J., Feng, Z., Ma, Z. and Derong, A. 2013. Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Protect. 44, 29-37. https://doi.org/10.1016/j.cropro.2012.10.012
  21. Sharma, S. C. D., Shovon, M. S., Jahan, M. G. S., Asaduzzaman, A. K. M., Rahman, M. A., Biswas, K. K., Abe, N. and Roy, N. 2013. Antibacterial and cytotoxic activity of Bacillus methylotrophicus-SCS2012 isolated from soil. J. Microbiol. Biotechnol. Food Sci. 2, 2293-2307.
  22. Sim, I., Koh, J. H., Kim, D. J., Gu, S. H., Park, A. and Lim, Y. H. 2014. In vitro assessment of the gastrointestinal tolerance and immunomodulatory function of Bacillus methylotrophicus isolated from a traditional Korean fermented soybean food. J. Appl. Microbiol. 118, 718-744.
  23. Sun, P., Hui, C., Wang, S., Khan, R. A., Zhang, Q. and Zhao, Y. H. 2016. Enhancement of algicidal properties of immobilized Bacillus methylotrophicus ZJU by coating with magnetic $Fe_3O_4$nanoparticlesandwheatbran. J. Hazard. Mater. 301, 65-73. https://doi.org/10.1016/j.jhazmat.2015.08.048
  24. Uribe, E. and Loria, R. 1994. Response of Colletotrichum coccodes to fungicides in vitro. Amer. Potato J. 71, 455-465. https://doi.org/10.1007/BF02849099
  25. Wang, S. L., Shih, I. L., Liang, T. W. and Wang, C. H. 2002. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. Agric. Food Chem. 50, 2241-2248. https://doi.org/10.1021/jf010885d
  26. Xie, F., Quan, S., Liu, D., Ma, H., Li F., Zhou, F. and Chen, G. 2013. Purification and characterization of a novel ${\alpha}$-amylase from a newly isolated Bacillus methylotrophicus strain P11-2. 2013. Proc. Biochem. 49, 47-53.
  27. Yu, G. Y., Sinclair, J. B., Harman, G. L. and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amylolquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34, 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5
  28. Yuan, J., Raza, W, Shen, Q. and Huang, Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubens. Appl. Environ. Microbiol. 78, 5942-5944. https://doi.org/10.1128/AEM.01357-12
  29. Zhang, T., Li, R., Qian, H., Mu, W., Miao, M. and Jiang, B. 2013. Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydr. Polymers 101, 975- 1056.
  30. Zhang, Y., Wang, X. J., Chen, S. Y., Guo, L. Y., Song, M. L., Feng, H., Li, C. and Bai, J. G. 2015. Bacillus methylotrophicus isolated from the cucumber rhizosphere degrades ferulic acid in soil and affects antioxidant and rhizosphere enzyme activities. Plant Soil 392, 309-321. https://doi.org/10.1007/s11104-015-2464-y