DOI QR코드

DOI QR Code

Lactobacillus plantarum-fermented Opuntia humifusa Extracts (fOH) Increases the Anti-obesity Activity in Mice Fed a 45% Kcal High Fat Diet

유산균 발효된 천년초 열매 추출물의 고지방식이 마우스에서의 항비만 효과

  • Received : 2017.04.19
  • Accepted : 2017.05.10
  • Published : 2017.06.30

Abstract

Recently, there has been a marked increase in the use of bioactive products resulting from the fermentation of natural substances by microorganisms. In this study, Opuntia humifusa (OH) was fermented using Lactobacillus plantarum (fermented Opuntia humifusa; fOH). We then examined the anti-obesity effect of fOH in mice fed a 45% Kcal high fat diet (HFD). In this study, mice were treated with fOH concentrations of 100, 200, and 400 mg/kg. The mice in the control group were treated with OH at a concentration of 400 mg/kg based on previous animal experiments. All of the mice given a continuous HFD showed an increase in their weight, the density of abdominal fat, and the accumulated periovaric and abdominal fat. All of these obesity-linked factors, however, were significantly decreased in the groups treated with fOH at concentrations of 200 and 400 mg/kg. Mice treated with fOH at 100 mg/kg did not show a significant decrease in these obesity-linked factors compared to the control group. It appears that fOH fermented by L. plantarum has a greater anti-obesity effect in HFD-supplied mice compared to unfermented OH. While further studies of fOH are needed to examine its effect on obesity, hyperlipidemia, hepatic steatosis, renal function, and type II diabetes with its relevant complications, fOH may have significant therapeutic potential in the treatment of metabolic syndrome.

미생물을 이용한 천연물 발효 시 유용생리활성 증가가 보고된 바, 천년초(Opuntia humifusa; OH)를 Lactobacillus plantarum 을 이용하여 발효시켰으며(fermented Opuntia humifusa; fOH), fOH 의 비만 억제 효과를 확인하기 위해 45%Kcal 고지방식이(HFD)로 비만을 유도하였다. 이 전의 동물실험에 근거하여 OH 400 mg/kg 농도로 처리하였으며, fOH 는 최고 농도 400 mg/kg을 비롯하여 200, 100 mg/kg으로 처리하였다. 지속적인 HFD 공급으로 HFD 대조군에서는 체중, 복부지방 밀도, 난소주위 축적 지방 및 복부 축적 지방량 등이 증가하였으나, fOH 400, 200 mg/kg 처리군에서는 이들 비만인자들이 모두 유의적으로 감소하였다. fOH 100 mg/kg 처리 된 HFD 마우스는 OH 400 mg/kg 처리 마우스에 비해 의미 있는 억제 효과가 나타나지 않았다. 이는 OH에 비해 L. plantarum 로 발효된 fOH가 HFD공급 마우스에서 항비만 효과를 상승시키는 것으로 보인다. 추가적으로 2형 당뇨병 및 관련 합병증으로 확대하여 비만, 고지질혈증, 간지방증, 신장 기능 등을 이용하여 억제 기작 연구가 진행되면 대사증후군을 위한 새로운 강력한 치료제로서의 제안될 가능성이 있다.

Keywords

References

  1. Chen, H., Qu, Z., Fu, L., Dong, P. and Zhang, X. 2009. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. J. Food Sci. 74, C469-474. https://doi.org/10.1111/j.1750-3841.2009.01231.x
  2. Cho, J. Y., Park, S. C., Kim, T. W., Kim, K. S., Song, J. C., Kim, S. K., Lee, H. M., Sung, H. J., Park, H. J., Song, Y. B., Yoo, E. S., Lee, C. H. and Rhee, M. H. 2006. Radical scavenging and anti-inflammatory activity of extracts from Opuntia humifusa Raf. J. Pharm. Pharmacol. 58, 113-119. https://doi.org/10.1211/jpp.58.1.0014
  3. Desai, C. S. and Martin, S. S. and Blumenthal, R. S. 2014. Non-cardiovascular effects associated with statins. BMJ. 349, g3743. https://doi.org/10.1136/bmj.g3743
  4. Foger, B. 2011. Lipid lowering therapy in type 2 diabetes. Wien. Med. Wschr. 161, 289-296.
  5. Goldstein, G. and Nobel, P. S. 1994. Water relations and low temperature acclimation for cactus species varying in freezing tolerance. Plant Physiol. 104, 675-681. https://doi.org/10.1104/pp.104.2.675
  6. Hahm, S. W., Park, J. and Son, Y. S. 2011. Opuntia humifusa stems lower blood glucose and cholesterol levels in streptozotocin- induced diabetic rats. Nutr. Res. 31, 479-487. https://doi.org/10.1016/j.nutres.2011.05.002
  7. Hays, N. P., Galassetti, P. R. and Coker, R. H. 2008. Prevention and treatment of type 2 diabetes: current role of lifestyle, natural product, and pharmacological interventions. Pharmacol. Ther. 118, 181-191. https://doi.org/10.1016/j.pharmthera.2008.02.003
  8. Hida, K., Wada, J., Eguchi, J., Zhang, H., Baba, M., Seida, A., Hashimoto, I., Okada, T., Yasuhara, A., Nakatsuka, A., Shikata, K., Hourai, S., Futami, J., Watanabe, E., Matsuki, Y., Hiramatsu, R., Akagi, S., Makino, H. and Kanwar, Y. S. 2005. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc. Natl. Acad. Sci. USA 102, 10610-10615. https://doi.org/10.1073/pnas.0504703102
  9. Inzucchi, S. E. 2002. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA. 287, 360-372. https://doi.org/10.1001/jama.287.3.360
  10. James, P. T., Leach, R., Kalamara, E. and Shayeghi, M. 2001. The worldwide obesity epidemic. Obes. Res. 9, 228S-233S. https://doi.org/10.1038/oby.2001.123
  11. Joseph, J. J. and Golden, S. H. 2014. Type 2 diabetes and cardiovascular disease: what next? Curr. Opin. Endocrinol. Diabetes Obes. 21, 109-120. https://doi.org/10.1097/MED.0000000000000044
  12. Jung, Y. M., Lee, D. S. and Kwon, K. S. 2017. The Characterization of L. plantarum-fermented Opuntia humifusa. J. Korea Convergence Society 8, 107-114 https://doi.org/10.15207/JKCS.2017.8.1.107
  13. Jung, Y. M., Lee, S. H., Lee, D. S., You, M. J., Chung, I. K., Cheon, W. H., Kwon, Y. S., Lee, Y. J. and Ku, SK. 2011. Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutr. Res. 31, 387-396. https://doi.org/10.1016/j.nutres.2011.04.005
  14. Kang, J., Lee, J., Kwon, D. and Song, Y. 2013. Effect of Opuntia humifusa supplementation and acute exercise on insulin sensitivity and associations with PPAR-${\gamma}$ and PGC-1${\alpha}$ protein expression in skeletal muscle of rats. Int. J. Mol. Sci. 14, 7140-7154. https://doi.org/10.3390/ijms14047140
  15. Kang, J., Park, J., Choi, S. H., Igawa, S. and Song, Y. 2012. Opuntia humifusa supplementation increased bone density by regulating parathyroid hormone and osteocalcin in male growing rats. Int. J. Mol. Sci. 13, 6747-6756. https://doi.org/10.3390/ijms13066747
  16. Kang, S. J., Lee, J. E., Lee, E. K., Jung, D. H., Song, C. H., Park, S. J., Choi, S. H., Han, C. H., Ku, S. K. and Lee, Y. J. 2014. Fermentation with Aquilariae Lignum enhances the anti-diabetic activity of green tea in type II diabetic db/db mouse. Nutrients 6, 3536-3571. https://doi.org/10.3390/nu6093536
  17. Keating, G. M. 2011. Fenofibrate: a review of its lipid-modifying effects in dyslipidemia and its vascular effects in type 2 diabetes mellitus. Am. J. Cardiovasc. Drugs 11, 227-247. https://doi.org/10.2165/11207690-000000000-00000
  18. Kim, C. M., Yi, S. J., Cho, I. J. and Ku, S. K. 2013. Red-koji fermented red ginseng ameliorates high fat diet-induced metabolic disorders in mice. Nutrients 5, 4316-4332. https://doi.org/10.3390/nu5114316
  19. Kim, U. H., Yoon, J. H., Li, H., Kang, J. H., Ji, H. S., Park, K. H., Shin, D. H., Park, H. Y. and Jeong, T. S. 2014. Pterocarpan-enriched soy leaf extract ameliorates insulin sensitivity and pancreatic ${\beta}$-cell proliferation in type 2 diabetic mice. Molecules 19, 18493-18510. https://doi.org/10.3390/molecules191118493
  20. Kunitomi, M., Wada, J., Takahashi, K., Tsuchiyama, Y., Mimura, Y., Hida, K., Miyatake, N., Fujii, M., Kira, S., Shikata, K. and Maknio, H. 2002. Relationship between reduced serum IGF-I levels and accumulation of visceral fat in Japanese men. Int. J. Obes. Relat. Metab. Disord. 26, 361-369. https://doi.org/10.1038/sj.ijo.0801899
  21. Kwon, Y. I., Apostolidis, E. and Shetty, K. 2008. In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresour. Technol. 99, 2981-2988. https://doi.org/10.1016/j.biortech.2007.06.035
  22. Lee, J. W., Lee, K. W., Lee, S. W., Kim, I. H. and Rhee, C. 2004. Selective increase in pinolenic acid (all-cis-5,9,12-18:3) in Korean pine nut oil by crystallization and its effect on LDL-receptor activity. Lipids 39, 383-387. https://doi.org/10.1007/s11745-004-1242-2
  23. Levene, A. 1981. Pathological factors influencing excision of tumours in the head and neck. Part I. Clin. Otolaryngol. Allied. Sci. 6, 145-151. https://doi.org/10.1111/j.1365-2273.1981.tb01800.x
  24. Ludbrook, J. 1997. Update: microcomputer statistics packages. A personal view. Clin. Exp. Pharmacol. Physiol. 24, 294-296. https://doi.org/10.1111/j.1440-1681.1997.tb01823.x
  25. Park, S. H., Ko, S. K. and Chung, S. H. 2005. Euonymus alatus prevents the hyperglycemia and hyperlipidemia induced by high-fat diet in ICR mice. J. Ethnopharmacol. 102, 326-335. https://doi.org/10.1016/j.jep.2005.06.041
  26. Tilg, H. and Moschen, A. R. 2006. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772-783. https://doi.org/10.1038/nri1937
  27. Trinh, H. T., Han, S. J., Kim, S. W., Lee, Y. C. and Kim, D. H. 2007. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J. Microbiol. Biotechnol. 17, 1127-1133.
  28. Yun, S. N., Moon, S. J., Ko, S. K., Im, B. O. and Chung, S. H. 2004. Wild ginseng prevents the onset of high-fat diet induced hyperglycemia and obesity in ICR mice. Arch. Pharm. Res. 27, 790-796. https://doi.org/10.1007/BF02980150
  29. Zimmet, P. 2003. The burden of type 2 diabetes: are we doing enough? Diabetes Metab. 29, 6S9-18.