DOI QR코드

DOI QR Code

Interaction of CLIP-170, a Regulator of Microtubule Plus End Dynamics, with Kinesin 1 via KIF5s

미세소관의 plus end dynamics를 조절하는 CLIP-170과 kinesin 1의 KIF5s를 통한 결합

  • Jang, Won Hee (Department of Biochemistry, Inje University College of Medicine) ;
  • Jeong, Young Joo (Department of Biochemistry, Inje University College of Medicine) ;
  • Lee, Won Hee (Department of Neurosurgery, Inje University College of Medicine) ;
  • Kim, Mooseong (Department of Neurosurgery, Inje University College of Medicine) ;
  • Kim, Sang-Jin (Department of Neurology, Inje University College of Medicine) ;
  • Urm, Sang-Hwa (Department of Preventive Medicine, Inje University College of Medicine) ;
  • Seog, Dae-Hyun (Department of Biochemistry, Inje University College of Medicine)
  • 장원희 (인제대학교 의과대학 생화학교실) ;
  • 정영주 (인제대학교 의과대학 생화학교실) ;
  • 이원희 (인제대학교 의과대학 신경외과학교실) ;
  • 김무성 (인제대학교 의과대학 신경외과학교실) ;
  • 김상진 (인제대학교 의과대학 신경과학교실) ;
  • 엄상화 (인제대학교 의과대학 예방의학교실) ;
  • 석대현 (인제대학교 의과대학 생화학교실)
  • Received : 2017.02.02
  • Accepted : 2017.03.16
  • Published : 2017.06.30

Abstract

Microtubules are long rods in the cytoplasm of cells that plays a role in cell motility and intracellular transport. Microtubule-based transport by motor proteins is essential in intracellular transport. Kinesin 1 is a molecular motor protein that mediates the intracellular transport of various membranous vesicles, mRNAs, and proteins along microtubules. It is comprised of two heavy chains (KHCs, also called KIF5s) and two light chains (KLCs). KIF5s bear a motor domain in their amino (N)-terminal regions and interact with various cargoes through the cargo-binding domain in their carboxyl (C)-terminal regions. To identify proteins interacting with KIF5B, yeast two-hybrid screening was performed, and a specific interaction with the cytoplasmic linker protein 170 (CLIP-170), a plus end microtubule-binding protein, was found. The coiled-coil domain of CLIP-170 is essential for interactions with KIF5B in the yeast two-hybrid assay. CLIP-170 bound to the cargo-binding domain of KIF5B. Also, other KIF5s, KIF5A and KIF5C, interacted with CLIP-170 in the yeast two-hybrid assay. In addition, glutathione S-transferase (GST) pull-downs showed that KIF5s specifically interacted with CLIP-170. An antibody to KIF5B specifically co-immunoprecipitated CLIP-170 associated with KIF5B from mouse brain extracts. These results suggest that kinesin 1 motor protein may transport CLIP-170 in cells.

미세소관을 따라 이동하는 모터단백질들은 세포내 물질수송에 필수적인 역할을 한다. Kinesin 1은 세포내에서 미세소관을 따라 움직이는 모터단백질로서 다양한 소포, mRNA, 그리고 단백질의 세포내 수송에 관여한다. Kinesin 1은 2개의 장쇄단위체(KHCs, 또는 KIF5s)와 2개의 경쇄단위체(KLCs)로 구성되어 있다. KIF5s는 N-말단에 모터도메인을 가지고 있고 C-말단의 운반체 결합도메인을 통해 다양한 운반체와 결합한다. 본 연구에서 KIF5B와 결합하는 단백질을 분리하기 위하여 효모 two-hybrid 탐색을 수행한 결과 미세소관의 plus end 결합단백질인 cytoplasmic linker protein 170 (CLIP-170)을 분리하였다. CLIP-170의 coiled-coil 도메인은 KIF5B의 운반체 결합도메인과 결합하였다. 또한 CLIP-170은 KIF5A와 KIF5C와도 결합하였다. 그리고 glutathione S-transferase (GST) pull-down을 통해 KIF5s와 CLIP-170이 단백질수준에서 결합함을 확인하였다. 생쥐 뇌파쇄액을 KIF5B 항체로 면역침강한 결과 CLIP-170이 같이 침강함을 확인하였다. 이러한 결과들은 kinesin 1이 세포내에서 CLIP-170을 운반함을 시사한다.

Keywords

References

  1. Boscheron, C., Caudron, F., Loeillet, S., Peloso, C., Mugnier, M., Kurzawa, L., Nicolas, A., Denarier, E., Aubry, L. and Andrieux, A. 2016. A role for the yeast CLIP170 ortholog, the plus-end-tracking protein Bik1, and the Rho1 GTPase in Snc1 trafficking. J. Cell Sci. 129, 3332-3341. https://doi.org/10.1242/jcs.190330
  2. Brady, S. T. 1985. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73-75. https://doi.org/10.1038/317073a0
  3. Browning, H., Hackney, D. D. and Nurse, P. 2003. Targeted movement of cell end factors in fission yeast. Nat. Cell Biol. 5, 812-818. https://doi.org/10.1038/ncb1034
  4. Busch, K. E., Hayles, J., Nurse, P. and Brunner, D. 2004. Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev. Cell 6, 831-843. https://doi.org/10.1016/j.devcel.2004.05.008
  5. Carvalho, P., Tirnauer, J. S. and Pellman, D. 2003. Surfing on microtubule ends. Trends Cell Biol. 13, 229-237. https://doi.org/10.1016/S0962-8924(03)00074-6
  6. Caudron, F., Andrieux, A., Job, D. and Boscheron, C. 2008. A new role for kinesin-directed transport of Bik1p (CLIP- 170) in Saccharomyces cerevisiae. J. Cell Sci. 121, 1506-1513. https://doi.org/10.1242/jcs.023374
  7. Hirokawa, N., Noda, Y., Tanaka, Y. and Niwa, S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682-696.
  8. Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526. https://doi.org/10.1126/science.279.5350.519
  9. Hirokawa, N., Niwa, S. and Tanaka, Y. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638. https://doi.org/10.1016/j.neuron.2010.09.039
  10. Jang, W. H. and Seog, D. H. 2013. Kinesin superfamily-associated protein 3 (KAP3) mediates the interaction between Kinesin-II motor subunits and HS-1-associated protein X-1 (HAX-1) through direct binding. J. Life Sci. 23, 978-983. https://doi.org/10.5352/JLS.2013.23.8.978
  11. Kamal, A. and Goldstein, L. S. 2000. Connecting vesicle transport to the cytoskeleton. Curr. Opin. Cell Biol. 12, 503-508. https://doi.org/10.1016/S0955-0674(00)00123-X
  12. Kanai, Y., Dohmae, N. and Hirokawa, N. 2004. Kinesin transports RNA: isolation and characterization of an RNAtransporting granule. Neuron 43, 513-525. https://doi.org/10.1016/j.neuron.2004.07.022
  13. Kanai, Y., Okada, Y., Tanaka, Y., Harada, A., Terada, S. and Hirokawa, N. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384. https://doi.org/10.1523/JNEUROSCI.20-17-06374.2000
  14. Maekawa, H. and Schiebel, E. 2004. CLIP-170 family members: a motor-driven ride to microtubule plus ends. Dev. Cell 6, 746-748. https://doi.org/10.1016/j.devcel.2004.05.017
  15. Muresan, Z. and Muresan, V. 2005. Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J. Cell Biol. 171, 615-625. https://doi.org/10.1083/jcb.200502043
  16. Nakajima, K., Yin, X., Takei, Y., Seog, D. H., Homma, N. and Hirokawa, N. 2012. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron 76, 945-961. https://doi.org/10.1016/j.neuron.2012.10.012
  17. Nirschl, J. J., Magiera, M. M., Lazarus, J. E., Janke, C. and Holzbaur, E. L. 2016. ${\alpha}$-Tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. Cell Rep. 14, 2637-2652. https://doi.org/10.1016/j.celrep.2016.02.046
  18. Pierre, P., Scheel, J., Rickard, J. E. and Kreis, T. E. 1992. CLIP-170 links endocytic vesicles to microtubules. Cell 70, 887-900. https://doi.org/10.1016/0092-8674(92)90240-D
  19. Rickard, J. E. and Kreis, T. E. 1990. Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells. J. Cell Biol. 110, 1623-1633. https://doi.org/10.1083/jcb.110.5.1623
  20. Seog, D. H., Lee, D. H. and Lee, S. K. 2004. Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. J. Kor. Med. Sci. 19, 1-7. https://doi.org/10.3346/jkms.2004.19.1.1
  21. Setou, M., Seog, D. H., Tanaka, Y., Kanai, Y., Takei, Y., Kawagishi, M. and Hirokawa, N. 2002. Glutamate-receptorinteractingprotein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87. https://doi.org/10.1038/nature743
  22. Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A. and Hirokawa, N. 1998. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147-1158. https://doi.org/10.1016/S0092-8674(00)81459-2
  23. Willige, V. D., Hoogenraad, C. C. and Akhmanova, A. 2016. Microtubule plus-end tracking proteins in neuronal development. Cell Mol. Life Sci. 73, 2053-2077. https://doi.org/10.1007/s00018-016-2168-3