DOI QR코드

DOI QR Code

Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

충격파관에서 발생하는 반사 충격파와 경계층의 간섭에 대한 연구

  • Kim, Dong Wook (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Tae Ho (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Heuy Dong (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • Received : 2017.02.23
  • Accepted : 2017.04.10
  • Published : 2017.07.01

Abstract

The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

충격파와 경계층의 간섭 현상은 경계층이 박리하고, shock train이 발생하며, 유동장은 매우 복잡한 형태로 된다. 이러한 현상은 반사 충격파와 비정상 경계층이 간섭하는 충격파관에서도 발생한다. 그러나 충격파관에서 발생하는 shock train 현상에 대한 연구는 미비한 실정이다. 본 연구에서는 2차원 축대칭 충격파관을 사용하여 수치해석을 수행하였으며, 충격파관에서 발생하는 shock train의 유동 특성을 상세히 조사하기 위하여 압축성 Navier-Stokes 방정식을 적용하였다. 본 연구의 수치해석 결과를 바탕으로 상세한 파동선도를 통해 실험 결과와 비교하였다.

Keywords

References

  1. Matsuo, K., Miyazato, Y. and Kim, H. D., 1999, "Shock Train and Pseudo-Shock Wave Phenomena in Internal Gas Flows," Progress in Aerospace Sciences, Vol. 35, No. 1, pp. 34-41.
  2. Carroll, B. F. and Dutton, J. C., 1990, "Characteristics of Multiple Shock Wave/Turbulent Boundary-Layer Interactions in Rectangular Ducts," Journal of Propulsion and Power, Vol. 6, No. 2, pp. 186-193. https://doi.org/10.2514/3.23243
  3. Matsuo, K., Sasaguchi, K., Mochizuki, H. and Takechi, N., 1980, "Investigation of the Starting Process of a Supersonic Wind Tunnel," Bulletin of the JSME, Vol. 23, No. 186, pp. 1975-1981. https://doi.org/10.1299/jsme1958.23.1975
  4. Akatsuka, J. and Nagai, S., 2010, "The Effect of Diffuser Geometry on the Starting Pressure Ratio of a Supersonic Wind Tunnel," 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, p. 4344.
  5. Deng, R., Lee, K. H. and Kim, H. D., 2016, "Unsteadiness of Pseudo-Shock Wave in a Rectangular Duct," KSPE Spring Conference, pp. 280-285.
  6. Kleine, H., Lyakhov, V. N., Gvozdeva, L. G. and Gronig, H., 1992, "Bifurcation of a Reflected Shock Wave in a Shock Tube," Shock Waves, Springer Berlin Heidelberg, pp. 261-266.
  7. Mark. H., 1958, "The Interaction of a Reflected Shock Wave with the Boundary Layer in a Shock Tube," National Advisory Committee for Aeronautics.
  8. Davies, L. and Wilson, J. L., 1969, "Influence of Reflected Shock and Boundary-Layer Interaction on Shock-Tube Flows," The Physics of Fluids, Vol. 12, No. 5, pp. 37-43.
  9. Matsuo, K., Kawagoe, S. and Kage, K., 1974, "The Interaction of a Reflected Shock Wave with the Boundary Layer in a Shock Tube," Bulletin of JSME, Vol. 17, No. 110, pp. 1039-1046. https://doi.org/10.1299/jsme1958.17.1039
  10. Matsuo, K., Kage, K. and Kawagoe, S., 1975, "The Interaction of a Reflected Shock Wave with the Contact Region in a Shock Tube," Bulletin of JSME, Vol. 18, No. 121, pp. 681-688. https://doi.org/10.1299/jsme1958.18.681
  11. Zhang, G., Setoguchi, T. and Kim, H. D., 2015, "Numerical Simulation of Flow Characteristics in Micro Shock Tube," Journal of Thermal Science, Vol. 24, No. 3, pp. 246-253. https://doi.org/10.1007/s11630-015-0780-4
  12. Park, J. W., Kim, G. Y., Md.Alim, I. R. and Kim, H. D., 2015, "Experimental Study of Micro- Shock Tube Flow," Trans. Korean Soc. Mech. Eng. B, Vol. 39, No. 5, pp. 385-390. https://doi.org/10.3795/KSME-B.2015.39.5.385
  13. Kim, H. D., 1995, "Shock Wave Phenomena in Fluid Engineerings(II)," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 1, pp. 71-83.