DOI QR코드

DOI QR Code

A Numerical Study on the Impeller Meridional Curvature of High Pressure Multistage Pump

고압 다단 펌프의 임펠러 자오면 곡선에 대한 수치 해석적 연구

  • Kim, Deok Su (Research and Development 2Team, HYOSUNG GOODSPRINGS, INC.) ;
  • Jean, Sang Gyu (Research and Development 2Team, HYOSUNG GOODSPRINGS, INC.) ;
  • Mamatov, Sanjar (Research and Development 2Team, HYOSUNG GOODSPRINGS, INC.) ;
  • Park, Warn Gyu (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • Received : 2016.12.03
  • Accepted : 2017.04.10
  • Published : 2017.07.01

Abstract

This paper presents the hydraulic design an impeller and radial diffuser of a high-pressure multistage pump for reverse osmosis. The flow distribution and hydraulic performance for the meridional design of the impeller were analyzed numerically. Optimization was conducted based on the response surface method by varying the hub and shroud meridional curvatures, while maintaining the impeller outlet diameter, outlet width, and eye diameter constant. The analysis results of the head and efficiency with the variation in the impeller meridional profile showed that angle of the front shroud near the impeller outlet (${\varepsilon}Ds$) had the highest effect on head increase, while the hub inlet length ($d_{1i}$) and shroud curvature (Rds) had the highest effect on efficiency. From the meridional profile variation, an approximately 0.5% increase in efficiency was observed compared with the base model (case 25).

본 연구에서는 RO용 고압 다단 펌프의 수력 부 성능에 대해서 연구를 수행하였다. 수력 부 설계는 크게 임펠러 설계와 레이디얼 디퓨저 설계로 나뉠 수 있다. 임펠러의 자오면 형상 변화에 따른 유동분포와 성능을 수치 해석적으로 연구하였으며, 임펠러 외경, 출구 폭, eye dia 등은 고정시킨 상태에서 반응 표면 기법을 이용하여 허브 및 쉬라우드 자오면 곡선을 변화 시키면서 성능을 최적화하였다. 해석결과 양정에 가장 큰 영향을 미치는 설계 변수는 ${\varepsilon}Ds$로 나타났으며 효율은 허브 입구 길이 및 쉬라우드 곡선이 가장 큰 영향을 주는 것을 알 수 있었다. 자오면 프로파일을 변경한 결과 기준모델(case 25)에 비해 약 0.5% 효율이 개선됨을 확인할 수 있었다.

Keywords

References

  1. Kim, S., Choi, Y.-S., Yoon, J.-Y. and Kim, D.-S., 2008 "Design Optimization of Centrifugal Pump Impeller Using DOE," Journal of Fluid Machinery, Vol. 11, No. 3, pp. 36-42. https://doi.org/10.5293/KFMA.2008.11.3.036
  2. Yoo, I., Park, M.-R., Hwang, S.-C., Kim, S.-K. and Yoon, E.-S., 2012 "Development of Vertical Barrel Type Multistage Pump," Journal of Fluid Machinery, Vol. 15, No. 1, pp. 13-20. https://doi.org/10.5293/kfma..2012.15.1.013
  3. Ragoth Singh, R. and Nataraj, M., 2014, "Design and Analysis of Pump Impeller using SWFS," World Journal of Modeling and simulation, Vol. 10, No. 2, pp. 152-160.
  4. Kim, J.-H., Oh, K.-T., Pyun, K.-B., Kim, C.-K., Choi, Y.-S. and Yoon, J.-Y., 2012. "Design Optimization of Centrifugal Pump Impeller and Volute using Computational Fluid Dynamics," 26th IAHR Symposium on Hydraulic Machinery and Systems.
  5. Chung, K.-N., Park, P.-G., Cho, H. J. and Lee, S. G., 2001, "A Study of Performance Analysis for a Double-suction Centrifugal Pump," Journal of Fluid Machinery, Vol. 4, No. 4, pp.7-15.
  6. Bowerman, R. D. and Acosta, A. J., 1957, "Effect of the Volute on Performance of a Centrifugal Pump Impeller," ASME.
  7. Park, S.-H., 2001, "Modern Design of Experiments".
  8. Stepanoff, A. J., 1957, "Centrifugal and Axial Flow Pumps".
  9. Johann Friedrich Gulich, 2010, "Centrifugal Pumps".
  10. Karassik, I. J., Messina, J. P., Cooper, P. and Heald, C. C., 2008, "Pump Handbook 4th".