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Abstract 
 

Forward-secure signature is a specific type of signature, which can mitigate the damage 
caused by the signing key exposure. Most of the existing forward-secure (identity-based) 
signature schemes can update users’ secret keys at each time period, achieve the existential 
unforgeability, and resist against classical computer attacks. In this paper, we first revisit the 
framework of forward-secure identity-based signatures, and aim at supporting flexible key 
update at multi time period. Then we propose a post-quantum forward-secure identity-based 
signature scheme from lattices and use the basis delegation technique to provide flexible key 
update. Finally, we prove that the proposed scheme is strongly unforgeable under the short 
integer solution (SIS) hardness assumption in the random oracle model. 
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1. Introduction 

Identity-based signature (IBS), introduced by Shamir [1] in 1984, is a type of digital signature 
system in which a publicly known string identifying a user is used as a public key. The public 
string or identity can include an email address, a telephone number, or a physical IP address. A 
trusted third party, called a key generator center (KGC), generates a secret key according to 
the identity by using the system master secret key, and distributes the secret key to the 
corresponding user. Then the user can utilize her or his secret key to produce a signature for 
any message. Thus, identity-based signatures eliminate the need for certificates as used in a 
traditional public key infrastructure and reduce the cost of public key certificate management. 
Since then, identity-based signature has been extensively studied, and a large number of 
schemes have been published, such as [2-4].  

Generally speaking, when considering the security of digital signature schemes, we usually 
refer to the existential unforgeability against adaptive chosen-message attacks [5]. Existential 
unforgeability (EUF) can guarantee that an adversary who is given signatures for a few 
messages of his choice could not produce a signature for a new message. However, it is 
required to use a stronger security property called strong unforgeability (SUF) in a variety of 
applications, e.g. signcryption [6], encryption secure against chosen-ciphertext attacks, group 
signature, authenticated group key exchange. The reason is that strong unforgeability can 
ensure the adversary cannot even produce a fresh signature for a previously signed message. In 
other words, suppose that an adversary obtains a message-signature pair ( , )m s along with 
other message-signature pairs of his choice. A signature scheme is said to be strongly 
unforgeable [7-9] if the adversary cannot produce a new signature ′s  for m . 

At the same time, the security of digital signature schemes is usually studied under the 
assumption that secret keys are not exposed and are absolutely secure. However, in fact, key 
compromise seems inevitable or more likely to occur when mobile and unprotected devices 
are used in many cryptographic systems. When an adversary intrudes a user’s storage space, it 
can steal her or his secret keys and perform any cryptographic operation. It is obvious that 
secret key exposure will directly threaten the security of digital signature schemes. To reduce 
the damage of key exposure, Anderson [10] firstly introduced forward security property for 
digital signatures. In a forward-secure signature scheme, the whole lifetime is divided into d 
time periods which are labeled from 1 to d. At the end of time period i, a user can self-update 
her or his current secret key isk  to compute a new secret key 1isk +  for the next time period i+1 
by using a one-way function. Then the old key isk  is deleted and the new secret key 1isk +  is 
used to produce signatures at the time period i+1. In such a way, the secret key of a user is 
changed with different time period, but the public key is unchanged during the whole lifetime. 
Each signature is associated with one time period and the validity of time period needs to be 
verified during signature verification. As a result, compromise of the current secret key isk  
does not enable an adversary to forge signatures pertaining to the past j (j < i). This can be 
useful to mitigate the damage caused by key exposure without requiring distribution of keys. 
Until now, many forward-secure signature schemes [11-18] have been proposed including 
forward-secure identity-based signature (FSIBS) schemes [19-21]. 

Furthermore, most of the above mentioned forward-secure signature schemes are based on 
bilinear pairings. Their security rests on the hardness of the discrete logarithm problems and 
its variants. However, it is well known that, if in future quantum computer is realized, discrete 
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logarithm problem can be solved by Shor’s algorithm [22]. In order to resist against quantum 
computation attacks, post-quantum cryptography has been paid much attention in the field of 
cryptology. One of the most attractive post-quantum cryptosystems is lattice-based 
cryptography, which stems from its provable security guarantees, well studied theoretical 
underpinnings, and simplicity and potential efficiency. Recently, inspired by the breakthrough 
result of Ajtai in 1996 [23], lattice-based cryptography has been rapidly developing [24-35]. 

Our contribution. In this paper, we mainly focus on three properties of identity-based 
signature: forward security, strong unforgeability, and post-quantum security. Firstly, the 
existing forward-secure identity-based signature schemes can only evolve users’ secret key 
period-by-period, and we revise the framework to provide flexible key update at multi time 
period. Secondly, we present a forward-secure identity-based signature scheme with flexible 
key update by using the basis delegation technique from lattices. Finally, the proposed scheme 
is proven to be strongly unforgeable under the small integer solution hardness assumption in 
the random oracle model. In addition, we show that there exists a flaw in the security proof of 
Zhang et al.’s forward-secure identity-based signature scheme from lattices [36], i.e. any 
challenger can solve an instance of short integer solution problem without the need of the 
adversary. The reason is that the challenger knows the initial trapdoor of lattice and is able to 
compute new trapdoors of any extended lattices by the basis delegation technique.  

Organization. The rest of this paper is organized as follows. Some preliminaries are 
presented in Section 2. The revised framework of forward-secure identity-based signatures is 
proposed in Section 3. Our forward-secure identity-based signature scheme over lattices and 
its security proof are presented in Section 4. Some concluding remarks are given in Section 5. 
In appendix, Zhang et al.’s forward-secure identity-based signature scheme over lattices and 
its security proof are reviewed and analyzed.  

2. Lattices 
In this section, we will briefly review some fundamental backgrounds about lattice technique 
used in this paper. 

We will use integer lattices, namely discrete subgroups of m . The specific lattices contain 
mq�  as a sub-lattice for some prime q that is much smaller than the determinant of the lattice. 

Definition 1  For a prime number q, 0
n m
qA ×∈  and n

qu∈ , define: 

0 0( ) : { , mo. }.  dm n
q qs tA e s A s e qΤΛ = ∈ ∃ =⋅∈   

0 0( ) : { 0mo. d } .  m
q sA e A e qt⊥Λ = ∈ =⋅  

0 0( ) : { mod. } .  u m
q sA e A e u qtΛ = ∈ =⋅  

Observe that if 0( )u
qt A∈Λ  then 0 0( ) ( )u

q qA A t⊥Λ = Λ +  and hence 0( )u
q AΛ is a shift of 

0( )q A⊥Λ . 

2.1 Hard problem from lattices 
We recall the short integer solution (SIS) problem, which may be seen as an average-case 

problem related to the family of lattices described above. 
Definition 2 An instance of the SIS , , ,n m q β  problem is a uniformly random matrix 

0
n m
qA ×∈  for any positive integers ,  ( ),  ( )n m poly n q poly n= = , and a real norm bound 
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( )poly nβ = . The goal is to find a non-zero integer vector me∈  such that e β≤‖‖  
and 0· 0 n

qA e = ∈ , i.e., 0( )qe A⊥∈Λ . 

Gentry, Peikert and Vaikuntanathan showed in [26] that the SIS , , ,n m q β  problem is as hard 
(on the average) as approximating certain worst-case problems on lattices to within small 
factors. 

Theorem 1 (Worst-case to Average-case Reduction) For any polynomial-bounded 
, ( )m poly nβ =  and for any prime · ( log )q n nβ ω≥ , the average-case problem SIS , , ,n m q β  

is as hard as approximating the shortest independent vectors problem (SIVP) problem in the 
worst case to within certain · ( )O nγ β≥   factors. 

2.2 The Gram-Schmidt norm of a basis 

Let S  be a set of vectors 1{ , , }kS s s=   in m . We use the following notation: 

 S  denotes the 2L  length of the longest vector in S , i.e. 
1

: max ii k
S s

≤ ≤
=‖‖ ‖ ‖. 

 1: { , , } m
kS s s= ⊂   denotes the Gram-Schmidt orthogonalization of the vectors 

1, , ks s  taken in that order. 

We refer to S  as the Gram-Schmidt norm of S . 

Micciancio and Goldwassser [25] showed that a full-rank set S  in a lattice Λ  can be 
converted into a basis T  for Λ  with an equally low Gram-Schmidt norm. 

Lemma 1 ([25], Lemma 7.1)  Let Λ  be an m -dimensional lattice. There is a deterministic 
polynomial-time algorithm that, given an arbitrary basis of Λ  and a full-rank set 

1{ , , }mS s s=   inΛ , returns a basis T of Λ  satisfying 

 and / 2.T S T S m≤ ≤  

In cryptography, we typically hand over a “bad” basis with long vectors, as the public key, 
and keep a “good” (short) basis as our secret key. This principle goes back to Ajtai [24], who 
showed how to sample an essentially uniform matrix 0

n m
qA ×∈ with an associated basis 

0AT  

of 0( )q A⊥Λ  with low Gram-Schmidt norm. The most recent improvement for generating such 

a matrix 0A together with a short trapdoor basis 
0AT  is due to Alwen and Peikert [27]. 

Theorem 2 ([27], Theorem 3.2) Let 3q ≥  be odd and : 6 logm n q=    . There is a 

probabilistic polynomial-time algorithm TrapGen ( , )q n  that outputs a pair 0( n m
qA ×∈ , 

0
)m m

AT ×∈ such that 0A is statistically close to a uniform matrix in n m
q
× and 

0AT is a basis 

for 0( )q A⊥Λ  satisfying  

0 logA O qT n≤‖ ‖ （ ） and 
0

( log )AT O n q≤‖ ‖  
with all but negligible probability in n . 

Let ( log )TG O n qσ =  denote the maximum Gram-Schmidt norm of a basis produced by 
TrapGen ( , )q n . 
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2.3 Discrete Gaussians 
We briefly recall Gaussian distributions over lattices [26]. 
Definition 3  For any positive parameter σ ∈  and any vector mc∈ , define: 

2

, 2( ) exp .c
x cxσρ p
σ

 −
= − 

 

‖ ‖
 

For an m -dimensional latticeΛ , define the discrete Gaussian distribution , ,cσΛD  over Λ  
(centered at c ) as 

,
, ,

,

( )
, ( ) .

( )
c

c
c

x

y
y y

x
σ

σ
σ

ρ
ρΛ

∈Λ

∀ ∈Λ =
∑

D  

2.4 Sampling a vector 
Gentry, Peikert and Vaikuntanathan [26] proposed an efficient Gaussian sampling 

algorithm---SamplePre algorithm. The following lemma captures standard properties of these 
sampling distributions. 

Lemma 2 Let 2q ≥  and let 0A  be a matrix in n m
q
×  with m n> . Let 

0AT  be a basis for 

0( )q A⊥Λ  and 0 · ( log )AT mσ ω≥‖ ‖ . Then for n
qu∈ : 

(1) There is a PPT algorithm SampleDom (1 )n  that samples an x  from the distribution 

, ,0m σD  over { : }m
nD x x mσ= ∈ ≤‖‖D , for which the distribution of 0A x⋅  is uniform 

over n
q . 

(2) There exists a PPT algorithm SampleGaussian
00( , , )AA T σ  that returns 0( )qx A⊥∈Λ  

drawn from a distribution statistically close to 
0( ), ,0q A σ⊥Λ

A . 

(3) There is a PPT algorithm SamplePre
00( , , , )AA T u σ that returns 0( )u

qx A∈Λ  

sampled from a distribution statistically close to 
0( ), ,0u

q A σΛ
A , where 0( )u

q AΛ  is not empty. 

2.5 Basis delegation technique 
When trapdoor delegation is required, one cannot simply hand over the resulting basis as it 

leaks information about the original trapdoor, and thus one needs to use algorithm RandBasis 
to obtain a randomized offspring with a new, random trapdoor. The following lemma shows 
the property of RandBasis algorithm [29]. 

Lemma 3 On input a basis 0T  of the lattice 0( )q A⊥Λ  of dimension m  and a Gaussian 

parameter 0 · ( log )T nσ ω≥‖ ‖ , the polynomial time algorithm RandBasis 0( , )T σ  outputs a 

basis T ′ of 0( )q A⊥Λ  with ·T mσ′ ≤‖‖ . The basis is independent of 0T  in the sense that for 

any two bases 0T ,T ′  of 0( )q A⊥Λ  and 0max{ , } ( log )T T nσ ω′≥ ⋅‖ ‖‖‖ , RandBasis 0( , )T σ  
is within negligible statistical distance of RandBasis ( , )T σ′ . 

Now, we recall Agrawal et al.’s basis delegation technique [31], which allows one to use a 
short basis of a given lattice to derive a new short basis of a related lattice in a secure way and 
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does not increase the dimension of the underlying lattices. This technique includes SampleR 
algorithm, BasisDel algorithm, and SampleRwithBasis algorithm. 

Definition 4  (1) A matrix R  in m m× is q -invertible, if modR q  is invertible as a 

matrix in m m× . 
(2) : ( log ) log ( log )TGR L m n q mσ ω ω⋅= = ⋅ . 

(3) The distribution m m×D  on matrices in m m×  is defined as 
, ,0

( )m
R

m
σD  conditioned on 

the resulting matrix being q -invertible. 

Algorithm SampleR(1m ): 
(1) Input a standard basis T  of the lattice m . 
(2) For 1, ,i m=  , do ir ← SampleGaussian( , , ,0m

RT σ ). 
(3) Output R  if 1( , , )mR r r=   is q -invertible, otherwise repeat step (2). 

The above algorithm samples matrices in m m×  from a distribution that is statistically close 
to m m×D , and step (2) needs to be repeated fewer than two times in expectation for prime q . 

Algorithm BasisDel( , , ,AA R T σ ): 

(1) Input a rank n  matrix n m
qA ×∈ , a q -invertible matrix m mR ×∈  sampled from 

m m×D , a basis AT  of ( )q A⊥Λ , and a parameter σ ∈ . 

(2) Let 1{ , , } m
A mT a a= ⊆  . Compute 1: { , , } m

B mT Ra Ra′ = ⊆  . It is obvious that 

BT ′  is a set of independent vectors in ( )q B⊥Λ , where 1: n m
qB AR− ×= ∈ . 

(3) Convert BT ′  into a basis BT ′′  of ( )q B⊥Λ  by using Lemma 1, in which the algorithm takes 

as input BT ′  and an arbitrary basis of ( )q B⊥Λ , and outputs a basis BT ′′ whose 

Gram-Schmidt norm is no more than that of BT ′ . 
(4) Output the resulting basis BT ←RandBasis( ,BT σ′′ ) for ( )q B⊥Λ . 

The following theorem shows the property of the random basis BT  produced by algorithm 

BasisDel for 1( )q AR⊥ −Λ . 

Theorem 3 Suppose that R  is sampled from m m×D  and σ  satisfies 
3/2| (log )AT m mσ σ ω> ⋅ ⋅‖ .Then BT  is distributed statistically close to the distribution  

RandBasis( ,T σ ), where T  is an arbitrary basis of 1( )q AR⊥ −Λ  satisfying  / ( )T mσ ω≤‖‖ . 

If R is a product of l  matrices sampled from m m×D , then the bound on σ  degrades to 
1/2| ( (log )) (log )l

A RT m m mσ σ ω ω> ⋅ ⋅‖ . 

Algorithm SampleRwithBasis( A ): 
(1) Generate ( , )BB T ←TrapGen( ,q n ), where a random matrix B  has rank n  in n m

q
×  

and BT  is a basis of ( )q B⊥Λ  such that / ( l g ) oB TG RLT mσ ω≤ =‖ ‖ . 
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(2) Let 1( , , ) n m
m qA a a ×= ∈  . For 1, ,i m=  , do: 

   (a) Sample ir ← SamplePre( , , ,B i RB T a σ ) in m , where modi iBr a q=  and ir  is 
sampled from a distribution statistically close to 

( ), ,0ai
q RB σΛ

D . 

  (b) Repeat step (a) until ir  is q  linearly independent of 1 1, , ir r− . 

(3) Output 1( , , ) m m
mR r r ×= ∈   and BT , where R  has rank m  over q . 

According to the construction, we have modBR A q= , i.e. 1 modB AR q−= . 
Furthermore, we have the following property. 

Theorem 4  Let 2 logm n q>  and 2q >  a prime. For all but at most a nq−  fraction of 
rank n  matrices n m

qA ×∈ , algorithm SampleRwithBasis( A ) outputs a matrix m mR ×∈ , 

which is sampled from a distribution statistically close to m m×D , and a short basis BT  of 
1( )q AR⊥ −Λ  such that / ( )B RT mσ ω≤‖ ‖  with overwhelming probability. 

3. Formal definition and security model 
In this section, we give the revisited definition of the syntax and the security model of 

forward-secure identity-based signature. 
Firstly, we give the syntax of forward-secure identity-based signature scheme. Our syntax 

of forward-secure identity-based signature scheme is slightly different from previous one 
[19-21]. In our Update algorithm, any user can evolve his secret keys from the current time 
period 1j d≤ −  to the next any time period ( )i j i d< ≤ , not just to the next time period 

1i j d= + ≤  in one step. Consider a scenario where a manager can sign some documents by 
using his secret key, which is updated every day. In the next one week, the manager will get an 
annual leave of seven days and go traveling. In this case, the manager goes back and runs our 
Update algorithm only one time to generate his new secret key, whereas he has to execute 
previous Update algorithm [19-21] seven times according to original forward secure signature 
schemes. This case happens to the other forward-secure signature schemes [11-18]. Thus, in 
order to provide more flexible key update, we will revisit the Update algorithm in the 
framework of forward-secure identity-based signature. A revisited forward-secure identity- 
based signature (FSIBS) scheme consists of the following five algorithms: 

 Setup(λ ): This algorithm is run by key generation center (KGC) on input a security 
parameter λ  and the total number of time periods d , and generates public parameters 
pp and master secret keys msk . Then the public parameters pp  are published and the 

master secret key msk  is kept to itself by KGC. 
 Extract( , ,pp msk u ): Given pp , msk , and a user with identity u , this algorithm 

generates an initial secret key ,1sku  for the user u . KGC will use this algorithm to 
generate initial secret keys for all users participating in the system and distribute the 
initial secret keys to their respective owners via secure channels. 

 Update( ,, , , jpp i skuu ): Given pp , a current secret key , jsku  of a user u  at the current 

time period 1j d≤ − , this algorithm computes an update secret key ,isku  for the user u  
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at an update time period ( )i j i d< ≤ . The user u  can execute this algorithm by itself. 
 Sign( ,, ,ipp sku m ): Given pp , a message m , and a current secret key ,isku  of a user u  

at the current time period i d≤ , this algorithm outputs a signature s . The user u  can 
make a signature by running this algorithm. 

 Verify( , , , ,pp iu m p ): Given pp , a candidate signature s , a message m , a user u  and 
the time period i d≤ , this algorithm outputs accept if s  is a valid signature of the user 
u  on the message m  at the current time period i , and outputs reject otherwise. 

Next, we give the formal security definition---strong unforgeability under adaptive chosen 
identity and message attacks (SUF-ID-CMA) for forward-secure identity-based signatures, 
which is viewed as a combination of strong unforgeability with existential unforgeability 
under adaptive chosen identity and message attacks (EUF-ID-CMA) for forward-secure 
identity-based signatures [20]. More precisely, the security is defined using the following 
game between a challenger   and an adversary : 

 Setup. The challenger   runs the Setup algorithm. It gives the adversary   the 
resulting public parameters pp  and keeps the master secret key msk  by itself. 

 Queries. The adversary   adaptively makes a number of different queries to the 
challenger  . Each query can be one of the following. 
---Extract queries.   can request a secret key of any user u  at any time period i d≤ . 

For 1i = ,   responds by running Extract( , ,pp msk u ) and forwards the initial 
secret key ,1sku  to  . And for 1 j i d≤ < ≤ ,   returns the resulting 

,isk ←u Update ,( , , , )jpp i skuu to  . Especially, for 1i = , we can also view 

,1sk ←u Update ,0( , ,1, )pp skuu , where ,0 :sk msk=u . 
---Sign queries.   can ask for a signature of any user u  on any message m  for any 

time period i d≤ .   responds by first running Update ( ,, , , jpp i skuu ) to obtain the 

secret key ,isku  of u  at the time period i , and then running Sign( ,, ,ipp sku m ) to 
obtain a signature s , which is forwarded to  . 

 Forgery.  outputs a user with identity ∗u , a message ∗m , a time period i d∗ ≤  and a 
candidate signature ∗s .   succeeds if the followings hold true: 
(1) Verify( , , , ,pp i∗ ∗ ∗ ∗u m p )=accept. 
(2)   has not made extract queries on ∗u  at any time period i i∗≤ . 
(3) ( , , , )i∗ ∗ ∗ ∗u m s  is not among the tuples generated during the sign queries, 

The advantage of an adversary   in the above game is defined as 
Pr[ ],Adv succeeds=   

where the probability is taken over all coin tosses made by the challenger and the adversary. 
A forward-secure identity-bases signature scheme is SUF-ID-CMA secure, if for any 

adversary  , its advantage is negligible in the security parameter. 

4. The proposed scheme and its security 
In Zhang et al.’s forward-secure signature scheme [36], the Update algorithm can only 
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update a secret key from a time period 1i −  to the next time period i , i.e., the interval of time 
period 1t∆ = . So do the Update algorithms in the existing forward-secure identity-bases 
signature schemes [19-21]. In this section, we will improve the Update algorithm to provide 
more flexible key update, i.e. the interval of time period 1t∆ ≥ , and then prove that the 
improved scheme is strongly unforgeable under adaptively chosen identity and message 
attacks in the random oracle model. Furthermore, we will show that there exists a flaw in the 
security proof of Zhang et al.’s scheme [36] in appendix. 

4.1 The proposed forward-secure identity-based signature scheme 
 Setup( n ): On input a security parameter n , set the parameters ,  m q , divide the whole 

lifetime into d  time periods, and set two series of Gaussian parameters 1( , , )dσ σ σ=   

and 1( , , )dd d d=  . Next do: 
(1) Use algorithm TrapGen ( , )q n  to generate a uniformly random n m×  matrix 

0
n m
qA ×∈ with a corresponding short basis 

0AT  for 0( )q A⊥Λ  such that 

0 ( log )AT n q≤‖ ‖  . 

(2) Define two hash functions *
1 :{0,1} m mH ×→  , where the output is distributed as 

m m×D [31] , and *
2 :{0,1} n

qH →  . 

(3) Publish the public parameters ( )0 1 2,  ,  pp A H H= , and keep master secret key 

0
( )Amsk T=  secret. 

 Extract( , ,pp msk u ): On input public parameter pp , a master key msk , a user with 
identity u  and an initial time period 1i = , KGC does: 
(1) Let ||1 1( ||1)R H=u u  and compute 1

||1 0 ||1· modA A R q−=u u . 
(2) Evaluate  
                    ||1sk ←u BasisDel

00 11( , , , ).AA R T σ‖u  

(3) Send a trapdoor 1sk ‖u  of 1( )q A⊥Λ ‖u  to the user over a secure channel. 

 Update( , , , jpp i sk ‖uu ): On input public parameter pp , the current time period i d≤ , 

and jsk ‖u  which denotes the signing secret key associated with the previous time period 
 j i< , the user with identity u  performs the following steps to update his signing secret 

key: 
(1) Compute 1 1( ) ( 1)jR H j H= ‖ ‖ ‖u u u  and 1

0· modj jA A R q−=‖ ‖u u  as the public key at 

time period j  with respect to signing secret key jsk ‖u . 

(2) Let 1 1( ) ( 1)j iR H i H j→ = +‖ ‖u u , and compute 

isk ←‖u BasisDel ( , , , ).j i ij jA R sk s→‖ ‖u u  

Note that isk ‖u  is a short basis of ( )q iA⊥Λ ‖u , where 1 1
0· · modj ii j iA A R A R q− −

→= =‖ ‖ ‖u u u  

and 1 1( ) ( 1)iR H i H= ‖ ‖ ‖u u u . Obviously, when 1j i= − , our update algorithm is 
degraded to Zhang et al.’s key update algorithm. 
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 Sign( , ,ipp sk ‖u m ):On input public parameters pp  and a message *{0,1}∈m , the 
signing user u , whose signing secret key is isk ‖u  at the current time period i d≤ , 

computes 2 ( ) n
qy H i= ∈‖‖ u m and evaluates 

ie ←SamplePre ( , , , ),ii iA sk y δ‖ ‖u u  
Note that · modiiA e y q=‖u  and ie  is distributed as 

( ),y
q iiA δΛ ‖u

A . Finally, the signer 

outputs a signature ie . 
 Verify( , , , , ipp i eu m ): On input public parameters pp , a user with identity u , an index 

of time period i , a message m  and a candidate signature ie , the algorithm outputs 
accept if and only if  

0 i ie mδ< ≤ ⋅‖ ‖  and modiiA e y q⋅ =‖u , 

where 1
0· modi iA A R q−=‖ ‖u u , 1 1( ) ( 1)iR H i H= ‖ ‖ ‖u u u , and 2 ( )y H i= ‖‖u m . 

Otherwise, it outputs reject. 

4.2 Security proof 
Now, we give the proper security reduction for the proposed scheme. 
Theorem 5 In the random oracle model, the proposed forward-secure identity-based 

signature scheme is strongly unforgeable under adaptively chosen identity and message 
attacks, provided that the SIS hard problem assumption holds. 

Proof. Assume that for the proposed scheme there exists an adversary  , which makes at 
most 

1HQ  times 1H  oracle queries, 
2HQ  times 2H  oracle queries, EQ  extract queries, and 

SQ  signing queries, and has the advantage ε  in time t . According to the adversary, we will 
build an algorithm   that solves an instance of SIS (Definition 2) with probability at least ε ′  
and in time at most 't , contradicting the SIS hard problem assumption.  
   The algorithm   will be given a random matrix 0

n m
qA ×∈ . To use   to find a nonzero 

integer vector me∈  such that 0 0modA e q⋅ =  and e β≤‖‖ ,   must simulate a 
challenger for  . Such a simulation can be created in the following way: 

  Setup.   prepares system public parameters for  as follows. 
(1) Select d  uniform random integer 

1

* *
1 , , [ ]d HQ Q Q∈ , where 

1HQ  is the maximum 

number of queries of 1H  that   can make. 

(2) Sample d  random matrices * *
1 , , ~d m mR R × D  by running *

iR ←SampleR(1m ) for 
1, ,i d=  . 

(3) Choose a random [ ]w d∈  and set * *
0 1wA A R R←  . The matrix A  is uniform in 

n m
q
×  since all *

iR  are invertible mod q  and 0A  is uniform in n m
q
× . 

(4) Pick two hash functions as random oracles, *
1 :{0,1} m m

qH ×→   and           
*

1 :{0,1} m m
qH ×→  . 
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(5) Publish the public parameters ( )1 2,  ,  pp A H H= . 

  1H  random oracle queries.   may adaptively query the random oracle 1H  on any 
identity u  and any time period i  of its choice. To respond consistently to these queries, 
  maintains a list 1 1{( , , ( ), , )}L i H i= ∗ ∗‖u u  which is initially empty, and the simulator 
simply returns the same output on the same input without incrementing the query counter 

1HQ .   answers the Q -th such query as follows. 

(1)  For iQ Q∗= , set 1( || ) : iH i R∗=u , store the tuple ( , , , , )ii R∗ − −u  in 1L , and return *
iR  

as the oracle 1( || )H iu ’s value. 

(2) For iQ Q∗≠ , compute * * * 1
1 2 1·( ) n m

i i qA A R R R − ×
−= ∈   (if 1i = , then set 1A A= ), 

run SampleRwithBasis ( ) ( , )i i BA R T→   (where ~i m mR ×D  and a short basis BT  

for ( )q B⊥Λ  such that 1 modi iB A R q−= ⋅ ), save the tuple ( , , , , )i Bi R B Tu  in 1L , 

and return iR  as the value of 1( || )H iu . 

  Extract oracle queries.   makes adaptively key extraction queries on arbitrary identities 
u  and any time period i d≤ . To respond consistently to these queries,   maintains a 
list 2 {( , , , )}i iL i A sk= ‖ ‖u uu  which is initially empty, and the simulator simply returns 
the same output on the same input.  answers an initial or update key query on ( || )iu  as 
follows. 
(1) Let [ ]j i∈  be the oldest time period such that *

1( ) jH j R≠‖u . This implies that             
* *

1 1 1 1( 1) , , ( 1) jH R H j R −= − =‖ ‖u u . If *
1( || ) jH j R=u  for all 1, ,j i=  , then 

the simulator aborts and fails. 
(2) Retrieve the stored tuple ( , , , , )j Bj R B Tu  from 1L . This tuple was created when 

responding to a query for 1( )H j‖u . Assume that a key extraction query on ( )j‖u  is 
preceded by a hash query on all identity and previous time period, i.e. 
( 1), , ( 1)j −‖ ‖u u . By construction 

* * 1 1
1 1 1( ) ( ) modjB A R R H j q− −
−= ⋅ ‖u  

    and BT  is a short basis for ( )q B⊥Λ . 

   Note that 1 1
1 1· ( 1) ( )jA A H H j B− −= =‖ ‖ ‖u u u , and therefore BT  is a trapdoor for 

( )q jA⊥Λ ‖u , i.e. the secret key Bjsk T=‖u . Save ( , , , )j jj A sk‖ ‖u uu  in 2L . 

(3) Run Update( , , , jpp i sk ‖uu ) to generate an update secret key isk ‖u  for u  from the 

trapdoor secret key BT  for the identity and time period tuple ( )j‖u , and save 
( , , , )i ii A sk‖ ‖u uu  in 2L . Specially, if j i= , evaluate RandBasis ( , )ij isk sks →‖ ‖u u . 

Then send the resulting secret key isk ‖u  to the adversary. 
Note that when 1i = , such a query is viewed as an initial secret key query for ( 1)‖u . If               
random oracle *

1 1( 1)H R=‖u , then the simulator aborts and fails. Otherwise, by 
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construction 1
1( 1) modB A H q−= ⋅ ‖u  and BT  is a short basis for ( )q B⊥Λ . Then return 

an initial secret key 1sk ←‖u RandBasis ( 1,BT σ ) and save 1 1( ,1, , )A B sk=‖ ‖u uu  in 2L . 

  2H  random oracle queries.   may adaptively query the random oracle 2H  on any       
identity u , any time period i  and any message m  of its choice. To respond consistently 
to these queries,   maintains a list 3 2{( , , , , ( ))}iL i e H i= ‖‖u m u m  which is initially 
empty, and the simulator simply returns the same output on the same input.   answers 
such query as follows. 
(1) Look up ( , , ,*)ii A‖uu  in 2L (if necessary, look up 1( , , ( ), , )i H i ∗ ∗‖u u  in 1L  and               

compute 1 1
1 1· ( ) ( 1)iA A H i H− −= ‖ ‖ ‖u u u ). 

(2) Run SampleDom (1 )n
ie→ , compute 2 ( ) modiiH i A e q= ⋅‖‖‖ uu m ,  store the tuple           

2( , , , , ( ))ii e H i‖‖u m u m  in 3L , and return modiiA e q⋅‖u  as the oracle 

2 ( )H i‖‖u m ’s value. 

 Signing oracle queries. When running the adversary  , signing queries can occur. Suppose   
  asks for a signature on identity u  at time period i  for a message m .   answers these 
queries as follows.   looks up ( , , , , mod )i iii e A e q⋅‖uu m  in 3L , and returns ie   as the 
signature (if necessary, query 2H  random oracles on ( , , )iu m  in advance). 

 Challenge. Finally,   produces a forged signature e∗  for ( , , )i∗ ∗ ∗u m  on which it wishes 
to be challenged. We require that *u  has not been requested in any preceding and 
subsequent extract oracle queries. If *w i≠  and *

1( ) jH j R≠‖u  for all *1, ,j i=  , then 

the simulator aborts and fails. Otherwise, i.e. *w i=  and *
1( ) jH j R=‖u  for all 

*1, ,j i=  , recall that * *
0 1· wA A R R=  . Then by definition 

*
* 1 * 1
1 0( ) ( ) .n m

w qi
A A R R A− − ×= ⋅ = ∈

‖


u
 

Furthermore, we have 
* *

* * * *
2mod ( ).

i
A e q H i=⋅

‖
‖ ‖

u
u m  

Now without loss of generality, we assume that before outputting its forgery *e ,   
queries 2H  random oracle on * * *( , , )iu m  and   returns * * *i

A e⋅
‖u m

, i.e. 

* * *
* * *

2 ( ) mod .
i

H i A e q= ⋅
‖

‖ ‖
u m

u m  
Therefore, 

* * * * *
* * * *

2 ( ) mod ,
i i

A e H i A e q⋅ = = ⋅
‖ ‖

‖ ‖
u m u

u m  

i.e. *
*

0 0 modA e A e q⋅ = ⋅
m

 and *
*

0 ( ) 0modA e e q⋅ − =
m

.   outputs *
* 0e e e= − ≠

m
 

as a solution of SIS instance. It remains to show that *
*e e≠

m
. There are two cases to 

consider: 
(1) If   queried a signature on * * *( , , )iu m , it would receive a signature *e

m
. Because *e  
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is viewed as a forged signature on * * *( , , )iu m , we have *
*e e≠

m
. 

(2) If   did not query a signature on * * *( , , )iu m , then for the query to 2H  on 
* * *( , , )iu m ,   sampled *e ←

m
SampleDom (1 )n , stored a tuple  *

* * *( , , , ,i e
m

u m  

* * * )
i

A e⋅
‖u m

, and returned * * *
* * *

2 ( ) mod
i

H i A e q= ⋅
‖

‖ ‖
u m

u m  to  . By the 

preimage min-entropy property of the hash family, the min-entropy of *e
m

 given 

* * * mod
i

A e q⋅
‖u m

 is (log )nω . Thus, the signature *
*e e≠

m
 with overwhelming 

probability (log )1 2 nω−− [26] . 

   This completes the description of the simulation. It remains to analyze the probability of   
not aborting. For the simulation to complete without fail (write ¬abort), we require that all 
key extract queries on ( )i‖u  have *

1( ) jH j R≠‖u  for some [ ]j i∈  and that *w i=  and 
*

1( ) jH j R=‖u  for all *1, ,j i=   in the forgery stage. According to the analysis of 
successful probability in Agrawal et al.’s hierarchical identity-based encryption [31], we can 
obtain that 

1
Pr[ ] / ( )d

HQ d negl n−¬ ≥ −abort , where ( )negl n  is negligible. Furthermore, 

if   has advantage 0ε > , then   has advantage at least 
1

/ ( ) ( )d
HdQ negl ne −  in solving 

the SIS problem instance. This completes our proof. 

4.3 The flexibility of key update algorithm 
In the proposed forward-secure identity-based signature scheme from lattices, our key 

update algorithm can provide greater flexibility than those of the existing forward- secure 
identity-based signature schemes [19-21]. As shown in Table 1, for the existing scheme, any 
user runs the key update algorithms one time and updates her/his secret key from jsk ‖u  at the 

time period 1j d≤ − to 1jsk +‖u  at the next time period 1i j d= + ≤ . Furthermore, if she/he 
needs to update her/his secret key to the next multi time period i  ( )j i d< ≤ , she/he have to 
execute the key update algorithm i j−  times. When each running cost is expensive, the total 
costs will increase linearly. Fortunately, any user can run our key update algorithm only one 
time to update her/his secret key from the current time period 1j d≤ −  to the next any time 
period i  ( )j i d< ≤ .  

 
Table 1. Comparison of number of times for running key update algorithm 

Schemes From time period j to 1j +  From time period j to i  

Existing schemes [19-21] One time i j−  times 
Our scheme One time One time 

5. Conclusions 
We have revisited the definition of forward-secure identity-based signatures to provide 

flexible key update, and proposed an identity-based signature scheme from lattices. 
Furthermore, the proposed scheme is shown to have the properties as follows: forward security 
with flexible key update, strong unforgeability, and post-quantum security based on lattices. In 
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addition, it is indicated that there exists a serious drawback in the security proof of Zhang et 
al.’s scheme in appendix. Finally, we remark that a construction of efficient lattice-based 
forward-secure identity-based signature, which can achieve the strong unforgeability in the 
standard model, will be our future work. 

References 
[1] A. Shamir, “Identity-based cryptosystems and signature schemes,” in Proc. of Advances in 

Cryptology---CRYPTO 1984, LNCS, vol. 0196, pp. 47-53, August 19-22, 1984.  
Article (CrossRef Link) 

[2] K. Paterson, J. Schuldt, “Efficient identity based signatures secure in the standard model,” in Proc. 
of 11th Australasian Conference Information Security and Privacy---ACISP 2006, LNCS, vol. 
4058, pp. 207-222, July 3-5, 2006. Article (CrossRef Link) 

[3] E. Kiltz, G. Neven, “Identity-based signatures, ” in Proc. of Cryptology and Information Security 
Series on Identity-based Cryptography, vol. 2, IOS Press, pp. 31-44, 2008. 
Article (CrossRef Link)  

[4] P. Yang, Z. Cao, X. Dong, “Fuzzy identity based signature with applications to biometric 
authentication,” Computers and Electrical Engineering, vol.37, no. 4, pp. 532-540, July, 2011. 
Article (CrossRef Link) 

[5] S. Goldwasser, S. Micali, R. Rivest, “A digital signature scheme secure against adaptive 
chosen-messages attacks,” SIAM Journal on Computing, vol. 17, no. 2, pp. 281-308, April, 1988. 
Article (CrossRef Link) 

[6] J. An, Y. Dodis, T. Rabin, “On the security of joint signature and encryption, ” in Proc. of Int. 
Conference on the Theory and Applications of Cryptographic Techniques on Advances in 
Cryptology---EUROCRYPT 2002, LNCS, vol. 2332, pp. 83-107, April 28-May 2, 2002. 
Article (CrossRef Link) 

[7] C. Sato, T. Okamoto, E. Okamoto, “Strongly unforgeable ID-based signatures without random 
oracles, ” in Proc. of 5th Int. Conference of Security Practice and Experience--- ISPEC 2009, 
LNCS, vol. 5451, pp. 35-46, April 13-15, 2009.  Article (CrossRef Link) 

[8] M. Rückert, “Strongly unforgeable signatures and hierarchical identity-based signatures from 
lattices without random oracles,” in Proc. of 3rd Int. Workshop on Post-Quantum Cryptography- 
PQCrypto 2010, LNCS, vol. 6061, pp. 182-200, May 25-28, 2010. Article (CrossRef Link) 

[9] Z. Liu, Y. Hu, X. Zhang, F. Li, “Efficient and strongly unforgeable identity-based signature 
scheme from lattices in the standard model,” Security and Communication Networks, vol.6, 
pp.69-77, January, 2013. Article (CrossRef Link) 

[10] R. Anderson, “Two remarks on public key cryptology (invited lecture),” in Proc. of 4th ACM 
Conference on Computer and Communications Security---CCS 1997, April 1-4, 1997. 
Article (CrossRef Link) 

[11] M. Bellare, S. Miner, “A forward secure digital signature scheme,” in Proc. of 19th Annual Int. 
Cryptology Conference on Advances in Cryptology--- CRYPTO 1999, LNCS, vol. 1666, pp. 
431-448, August 15-19, 1999.  Article (CrossRef Link) 

[12] M. Abdalla, L. Reyzin, “A new forward-secure digital signature scheme,” in Proc. of 6th Int. 
Conference on the Theory and Application of Cryptology and Information Security Advances in 
Cryptology---ASIACRYPT 2000, LNCS, vol. 1976, pp. 116-129, December 3-7, 2000. 
Article (CrossRef Link) 

[13] G. Itkis, L. Reyzin, “Forward-secure signatures with optimal signing and verifying,” in Proc. of 
21st Annual Int. Cryptology Conference Advances in Cryptology-CRYPTO 2001, LNCS, vol. 2139, 
pp. 499-514, August 19-23, 2001. Article (CrossRef Link) 

[14] T. Maklin, D. Micciancio, S. Miner, “Efficient general forward-secure signatures with an 
unbounded number of time periods,” in Proc. of Int. Conference on the Theory and Applications of 
Cryptographic Techniques Advances in Cryptology--- EUROCRYPT 2002, LNCS, vol. 2332, pp. 
400-417, April 28-May 2, 2002. Article (CrossRef Link) 

http://dx.doi.org/doi:10.1007/3-540-39568-7_5
http://dx.doi.org/doi:10.1007/11780656_18
http://dx.doi.org/doi:10.3233/978-1-58603-947-9-31
http://dx.doi.org/doi:10.1016/j.compeleceng.2011.04.013
http://dx.doi.org/doi:10.1137/0217017
http://dx.doi.org/doi:10.1007/3-540-46035-7_6
http://dx.doi.org/doi:10.1007/978-3-642-00843-6_4
http://dx.doi.org/doi:10.1007/978-3-642-12929-2_14
http://dx.doi.org/doi:10.1002/sec.531
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-549.pdf
http://dx.doi.org/doi:10.1007/3-540-48405-1_28
http://dx.doi.org/doi:10.1007/3-540-44448-3_10
http://dx.doi.org/doi:10.1007/3-540-44647-8_20
http://dx.doi.org/doi:10.1007/3-540-46035-7_27


2806                                                             Liu et al.: Lattice-based SUF FSIBS with flexible key update 

[15] X. Boyen, H. Shacham, E. Shen, B. Waters, “Forward-secure signatures with untrusted update,” in 
Proc. of 13th ACM Conference on Computer and Communications Security---CCS 2006, pp. 
191-200,  October 30-November 3, 2006. Article (CrossRef Link) 

[16] A. Hülsing, C. Busold, J. Buchmann, “Forward secure signatures on smart cards, ” in Proc. of 19th 
Int. Conference on Selected Areas in Cryptography---SAC 2012, LNCS, vol. 7707, pp. 66-80, 
August 15-16, 2012. Article (CrossRef Link) 

[17] M. Abdalla, F. Hamouda, D. Pointcheval, “Tighter reductions for forward-secure signature 
schemes, ” in Proc. of 16th Conference on Practice and Theory in Public-Key 
Cryptography---PKC 2013, LNCS, vol. 7778, pp.292-311, February 26-March 1, 2013. 
Article (CrossRef Link) 

[18] J. Yu, F. Kong, X. Cheng, R. Hao, G. Li, “One forward-secure signature scheme using bilinear 
maps and its applications,” Information Sciences, vol. 279, pp. 60-76, September, 2014. 
Article (CrossRef Link) 

[19] Y. Liu, X. Yin, L. Qiu, “ID-based forward secure signature scheme from the bilinear pairings,” in 
Proc. of the Int. Symposium on Electronic Commerce and Security---ISECS 2008, pp. 179-183, 
August 3-5, 2008. Article (CrossRef Link) 

[20] J. Yu, R. Hao, F. Kong, X. Cheng, J. Fan, Y. Chen, “Forward-secure identity-based signature: 
security notions and construction,” Information Sciences, vol.181, no.3, pp. 648-660, 2011. 
Article (CrossRef Link) 

[21] N. Ebri, J. Baek, A. Shoufan, Q. Vu, “Forward-secure identity-based signature: new generic 
constructions and their applications,” Journal of Wireless Mobile Networks, Ubiquitous 
Computing, and Dependable Applications, vol. 4, no. 1, pp. 32-54, 2013. Article (CrossRef Link) 

[22] P. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a 
quantum computer,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1484-1509, October,1997. 
Article (CrossRef Link) 

[23] M. Ajtai, “Generating hard instances of lattices problems (extended abstract),” in Proc. of the 28th 
Annual ACM Symposium on the Theory of Computing---STOC 1996, pp. 99-108, May 22-24, 1996. 
Article (CrossRef Link) 

[24] M. Ajtai, “Generating hard instances of the short basis problem,” in Proc. of 26th Int. Colloquium 
on Automata, Languages and Programming---ICALP 1999, LNCS, vol. 1644, pp. 1-9, July 11-15, 
1999. Article (CrossRef Link) 

[25] D. Micciancio, S. Goldwasser, “Complexity of lattice problems: a cryptographic perspective,” 
Kluwer Academic Publishers, vol. 671, 2002. Article (CrossRef Link) 

[26] C. Gentry, C. Peikert, V. Vaikuntanathan, “Trapdoors for hard lattices and new cryptographic 
constructions,” in Proc. of 40th Annual ACM Symposium on Theory of Computing---STOC 2008, 
pp. 197-206, May 17-20, 2008. Article (CrossRef Link) 

[27] J. Alwen, C. Peikert, “Generating shorter bases for hard random lattices,” Theory of Computing 
Systems, vol. 48, no. 3, pp. 535-553, April, 2011. Article (CrossRef Link) 

[28] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. of the 41st Annual ACM 
Symposium on Theory of Computing---STOC 2009, pp. 169-178, May 31-June 2, 2009. 
Article (CrossRef Link) 

[29] D. Cash, D. Hofheinz, E. Kiltz, C. Peikert, “Bonsai trees, or how to delegate a lattice basis,” in 
Proc. of 29th Annual Int. Conference on the Theory and Applications of Cryptographic 
Techniques on Advances in Cryptology---EUROCRYPT 2010, LNCS, vol. 6110, pp. 523-552, 
May 30-June 3, 2010. Article (CrossRef Link) 

[30] S. Agrawal, D. Boneh, X. Boyen, “Efficient lattice (H)IBE in the standard model,” in Proc. of 29th 
Annual Int. Conference on the Theory and Applications of Cryptographic Techniques on Advances 
in Cryptology---EUROCRYPT 2010, LNCS, vol. 6110, pp. 553-572, May 30-June 3, 2010. 
Article (CrossRef Link) 

[31] S. Agrawal, D. Boneh, X. Boyen, “Lattice basis delegation in fixed dimension and 
shorter-ciphertext hierarchical IBE,” in Proc. of  30th Annual Cryptology Conference on Advances 
in Cryptology---CRYPTO 2010, LNCS, vol. 6223, pp. 98-115, August 15-19, 2010. 
Article (CrossRef Link) 

http://dx.doi.org/doi:10.1145/1180405.1180430
http://dx.doi.org/doi:10.1007/978-3-642-35999-6_5
http://dx.doi.org/doi:10.1007/978-3-642-36362-7_19
http://dx.doi.org/doi:10.1016/j.ins.2014.03.082
http://dx.doi.org/doi:10.1109/ISECS.2008.220
http://dx.doi.org/doi:10.1016/j.ins.2010.09.034
http://isyou.info/jowua/papers/jowua-v4n1-2.pdf
http://dx.doi.org/doi:10.1137/S0097539795293172
http://dx.doi.org/doi:10.1145/237814.237838
http://dx.doi.org/doi:10.1007/3-540-48523-6_1
http://dx.doi.org/doi:10.1007/978-1-4615-0897-7
http://dx.doi.org/doi:10.1145/1374376.1374407
http://dx.doi.org/doi:10.1007/s00224-010-9278-3
http://dx.doi.org/doi:10.1145/1536414.1536440
http://dx.doi.org/doi:10.1007/978-3-642-13190-5_27
http://dx.doi.org/doi:10.1007/978-3-642-13190-5_28
http://dx.doi.org/doi:10.1007/978-3-642-14623-7_6


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017                                          2807 

[32] Y. Yao, Z. Li, “A novel fuzzy identity based signature scheme based on the short integer solution 
problem,” Computers and Electrical Engineering, vol. 40, no. 6, pp. 1930-1939, August, 2014. 
Article (CrossRef Link) 

[33] S. Garg, C. Gentry, S. Halevi, “Candidate multilinear maps from ideal lattices,” in Proc. of 32nd 
Annual Int. Conference on the Theory and Applications of Cryptographic Techniques on Advances 
in Cryptology---EUROCRYPT 2013, LNCS, vol. 7881, pp. 1-17, May 26-30, 2013. 
Article (CrossRef Link) 

[34] C. Yang, S. Zheng, L. Wang, M. Tian, L. Gu, Y. Yang, “A fuzzy identity-based signature scheme 
from lattices in the standard model,” Mathematical Problems in Engineering, vol. 2014, Article ID 
391276, 10 pages, 2014. Article (CrossRef Link) 

[35] L. Ducas, D. Micciancio, “Improved Short Lattice Signatures in the Standard Model,” in Proc. of 
34th Annual Cryptology Conference on Advances in Cryptology---CRYPTO 2014, LNCS, vol. 
8616, pp. 335-352, August 17-21, 2014. Article (CrossRef Link) 

[36] X. Zhang, C. Xu, C. Jin, R. Xie, “Efficient forward secure identity-based shorter signature from 
lattice,” Computers and Electrical Engineering, vol. 40, no. 6, pp. 1963-1971, August, 2014. 
Article (CrossRef Link) 

Appendix 
Recently, Zhang et al. [36] proposed a forward-secure identity-based signature scheme from 

lattices, and claimed its existential unforgeability under the short integer solution hardness 
assumption. In the appendix section, we show that there is one serious drawback in Zhang et 
al.’s security proof, i.e. a challenger can solve an instance of SIS problem without the help of 
an adversary. The reason is that the challenger knows the initial trapdoor of lattice and is able 
to compute new trapdoors of any extended lattices by the basis delegation technique. 

A.1 Review of Zhang et al.’s scheme 
 Setup( n ): On input a security parameter n , set the parameters ,  m q , divide the whole 

lifetime into d  time periods, and set two series of Gaussian parameters 1( , , )dσ σ σ=   

and 1( , , )dd d d=  . Next do: 
(1) Use algorithm TrapGen ( , )q n  to generate a uniformly random n m×  matrix 

0
n m
qA ×∈ with a corresponding short basis 

0AT  for 0( )q A⊥Λ  such that 

0 ( log )AT n q≤‖ ‖  . 

(2) Define two hash functions *
1 :{0,1} m mH ×→  , where the output is distributed as 

m m×D  , and *
2 :{0,1} n

qH →  . 

(3) Publish the public parameters ( )0 1 2,  ,  pp A H H= , and keep master secret key 

0
( )Amsk T=  secret. 

 Extract( , ,pp msk u ): On input public parameter pp , a master key msk , a user with 
identity u  and an initial time period 1i = , KGC does: 
(1) Let ||1 1( ||1)R H=u u  and compute 1

||1 0 ||1· modA A R q−=u u . 

(2) Evaluate ||1sk ←u BasisDel
00 11( , , , ).AA R T σ‖u  

(3) Send a trapdoor 1sk ‖u  of 1( )q A⊥Λ ‖u  to the user over a secure channel. 

http://dx.doi.org/doi:10.1016/j.compeleceng.2013.09.005
http://dx.doi.org/doi:10.1007/978-3-642-38348-9_1
http://dx.doi.org/doi:10.1155/2014/391276
http://dx.doi.org/doi:10.1007/978-3-662-44371-2_19
http://doi.org/10.1016/j.compeleceng.2013.12.003
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 Update( 1, , , ipp i sk −‖uu ):On input public parameter pp , the current time period i d≤ , 
and 1isk −‖u  which denotes the signing secret key associated with the previous time period 

1i − , the user with identity u  performs the following steps to update his signing secret 
key: 
(1) Compute 1 11 ( 1) ( 1)iR H i H− = − ‖ ‖ ‖u u u  and 1

01 1· modi iA A R q−
− −=‖ ‖u u  as the 

public key in time period 1i −  with respect to signing secret key 1isk −‖u . 
(2)  Let 1( || )iR H i= u , and compute ||isk ←u BasisDel 1 1( , , , ).i ii iA R sk s− −‖ ‖u u   

     Note that ||isku  is a short basis of ( )q iA⊥Λ ‖u , where 

 1 1
01· · modii i iA A R A R q− −

−= =‖ ‖ ‖u u u  and 1 1( ) ( 1)iR H i H= ‖ ‖ ‖u u u . 

 Sign( , ,ipp sk ‖u m ):On input public parameters pp  and a message *{0,1}∈m , the 
signing user u , whose signing secret key is isk ‖u  at the current time period i d≤ , 

computes 2 ( ) n
qy H i= ∈‖‖ u m and evaluates ie ←SamplePre ( , , , ),ii iA sk y δ‖ ‖u u   

Note that · modiiA e y q=‖u  and ie  is distributed as 
( ),y

q iiA δΛ ‖u

A . Finally, the signer 

outputs a signature ie . 
 Verify( , , , , ipp i eu m ): On input public parameters pp , a user with identity u , an index 

of time period i , a message m  and a candidate signature ie , the algorithm outputs 
accept if and only if  

0 i ie mδ< ≤ ⋅‖ ‖  and modiiA e y q⋅ =‖u , 

where 1
0· modi iA A R q−=‖ ‖u u , 1 1( ) ( 1)iR H i H= ‖ ‖ ‖u u u , and 2 ( )y H i= ‖‖u m . 

Otherwise, it outputs reject. 

A.2 Zhang et al.’s security proof 
In this section, we briefly review the key points in their security proof. For further details, 

please refer to the literature [36]. 

 

Given parameters , , ,q n m β , find a nonzero integer vector me∈ such that 

* * 0 mod
i

A e q=⋅
‖u

 and e β≤‖‖ , 

where * * * *
1

0 ( ) n m
qi i

A A R − ×= ⋅ ∈
‖ ‖


u u

, 0
n m
qA ×∈  and * *

m m
i

R ×∈
‖


u

. 

 

Zhang et al. used the method of proof by contradiction. Assume that there exists a forger or 
adversary   that can forge a signature in the proposed scheme with non-negligible 
advantageε . Then a challenger   will solve an instance of short integer solution problem (as 
above) with a non-negligible probability ε ′  by using the ability of the adversary .In the 
simulation,   is viewed as a simulator who setups the system public parameters and responds 
to the adversary  ’s queries. 
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 In the phase of setup,   firstly runs the trapdoor algorithm TrapGen( ,q n ) to generate 

0
n m
qA ×∈  with corresponding trapdoor 

0

m m
A qT ×∈ . Then   sends the public 

parameter 0pp A=  to   and keeps the master secret key 
0Amsk T= by itself. 

 In the phase of queries,   randomly guesses the challenged time period * *(1 )i i d≤ ≤  
and the challenged identity *u  ( *u  is the l -th query). Then   may query the random 
oracles 1H  on ( , )iu  and 2H  on ( , , )iu m . In order to answer consistently,   maintains 
four lists in its local storage, called 1L  list, 2L  list, 3L list, and 4L  list, respectively. 
Moreover,   uses the known trapdoor 

0AT  to make response to  ’s queries, including 
UserkeyExt queries, Signing secret key queries, Sign queries, and Breakin queries, under 
the condition of security definition.  

 In the phase of forgery,   outputs a valid signature e∗  on a user with identity ∗u , a time 
period i∗ , and a message ∗m . That is to say, 

                                                2 ( ) mod
i

A e H i q∗ ∗
∗ ∗ ∗ ∗=⋅

‖
‖ ‖

u
u m                                 (1) 

Note that before forging a signature,   may query the random oracle 2H  on 

( , , )i∗ ∗ ∗u m . Then   samples e ∗ ←m
SampleDom( 1n ), stores a tuple ( , , ,i∗ ∗ ∗u m  

, )
i

e A e∗ ∗ ∗ ∗⋅
‖m u m

 into 4L , and returns 
i

A e∗ ∗ ∗⋅
‖u m

 to  . Here, it implies that 

2 ( ) mod
i

H i A e q∗ ∗ ∗
∗ ∗ ∗ = ⋅

‖
‖ ‖

u m
u m                              (2) 

 In the phase of solving the SIS problem instance, by combining the formulas (1) and (2), 
  has 

mod ( ) 0mod .
i i i

A e A e q A e e q∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗⋅ = ⋅ ⇔ ⋅ − =

‖ ‖ ‖u u m u m
 

Thus,   can output *
*e e e= −

m
 as a solution of the instance of SIS problem as above. 

Here, *
*e e≠

m
 holds except with negligible probability (log )2 nω− . 

A.3 Cryptanalysis of Zhang et al.'s security proof 
In Zhang et al.’s security proof, the reduction seems reasonable at first glance. However, in 

fact, the challenger   can solve the instance of SIS problem by itself, without the need of  . 
The reasons are listed as follows. 
(1) In the beginning of security proof, the challenger   is assumed to know the trapdoor 

0AT  since   runs the trapdoor algorithm TrapGen( ,q n ) to generate 0
n m
qA ×∈  with 

corresponding trapdoor 
0

m m
A qT ×∈ . 

(2) And then the simulator   can easily answer  ’s all queries by using the known 
trapdoor 

0AT . 
(3) Finally, the challenger   can evaluate 

* *i
AT ←

‖u

BasisDel * * *00( , , , )Ai i
A R T σ

‖u
 

  by using the known trapdoor 
0AT , and solve the instance of SIS problem 
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* * · 0mod
i

A e q=
‖u

 

  by using the trapdoor 
* *i

AT
‖u

 of * *( )q i
A⊥Λ

‖u
. 

Thus, the analysis shows Zhang et al.’s proof is incorrect. 
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