DOI QR코드

DOI QR Code

탄소나노튜브/폴리에스터 복합재의 역학적 거동과 하중전달에 관한 분자 동역학 전산모사 : 그래프팅 가공의 영향

Molecular Dynamics Study on Mechanical Behavior and Load Transfer of CNT/PET Nanocomposites : the Effects of Covalent Grafting

  • Jin, Juho (School of Energy Systems Engineering, Chung-Ang University) ;
  • Yang, Seunghwa (School of Energy Systems Engineering, Chung-Ang University)
  • 투고 : 2017.04.03
  • 심사 : 2017.06.30
  • 발행 : 2017.06.30

초록

탄소나노튜브와 폴리에스터 계면 간 그래프팅이 나노복합재의 역학적 거동과 하중전달에 미치는 영향을 고찰하기 위해 분자동역학 전산모사를 수행하고 그 결과를 Mori-Tanaka 모델 예측해와 비교하였다. 각 방향으로의 인장과 전단 전산모사를 통해 응력-변형률 선도를 도출한 후, 가교 유무에 따른 탄성거동 변화를 관찰하였다. 또한 가로등방성 강성행렬을 방향 평균하여 나노튜브가 랜덤분포하는 경우의 등방성 영률과 전단계수를 구하였다. 그 결과 가로방향 영률과 전단계수는 그래프팅 가공에 의해 향상되었으나, 길이방향 영률의 경우 나노튜브의 물성감소로 인해 오히려 물성이 저하되었다. 나노튜브의 랜덤분포를 고려한 예측 결과에서는 그래프팅 가공에 의해 물성이 약간 감소하였다.

Molecular dynamics simulation and the Mori-Tanaka micromechanics study are performed to investigate the effect of the covalent grafting between CNT and polyester on the mechanical behavior and load transfer of nanocomposites. The transversely isotropic stress-strain curves are determined through the tension and shear simulations according to the covalent grafting. Also, isotropic properties of randomly dispersed nanocomposites are obtained by orientation averaging the transversely isotropic stiffness matrix. By addressing the grafting, the transverse Young's modulus and shear moduli of the nanocomposites are improved, while the longitudinal Young's modulus decreases due to the degradation of the grafted CNT.

키워드

참고문헌

  1. Ajayan, P.M., Stephan, O., Colliex, C., and Trauth, D., "Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resinnanotube Composite," Science, Vol. 265, 1994, pp. 1212-1214. https://doi.org/10.1126/science.265.5176.1212
  2. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., and Shulte, K., "Carbon Nanotube-reinforced Epoxy-composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content," Composites Science and Technology, Vol. 64, No. 15, 2004, pp. 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002
  3. Yang, S., Yu, S., Kyoung, W., Hah, D.S., and Cho, M., "Multiscale Modeling of Size-dependent Elastic Properties of Carbon Nanotube/polymer Nanocomposites with Interfacial Imperfections," Polymer, Vol. 5, No. 2, 2012, pp. 623-633.
  4. Yang, S., Yu, S., and Cho, M., "Influence of Thrower-Sone- Wales Defects on the Interface Properties of Carbon Nanotube Reinforced Polypropylene Composites by Molecular Dynamics Approach," Carbon, Vol. 5, 2013, pp. 133-143.
  5. Qian, D., Dickey, E.C., Andrews, R., and Rantell, T., "Load Transfer and Deformation Mechanisms in Carbonnanotubepolystyrene Composites," Applied Physics Letters, Vol. 76, No. 20, 2000, pp. 2868-2970. https://doi.org/10.1063/1.126500
  6. Spitalsky, Z., Tasisb, D., Papagelisb, K., and Galiotis, C., "Carbon Nanotube-polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties," Progress in Polymer Science, Vol. 35, 2010, pp. 357-401. https://doi.org/10.1016/j.progpolymsci.2009.09.003
  7. Liu, L., Etika, K.C., Liao K.S., Hess, L.A., Bergbreiter, D.E., and Grunlan J.C., "Comparison of Covalently and Noncovalently Fuctionalised Carbon Nanotubes in Epoxy," Macromolecular Rapid Communications, Vol 30, 2009, pp. 627-632. https://doi.org/10.1002/marc.200800778
  8. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C., and Siochi, E.J., "Constitutive Modeling of Nanotube-reinforced Polymer Composites," Composites Science and Technology, Vol. 63, 2003, pp. 1617-1687. https://doi.org/10.1016/S0266-3538(03)00071-X
  9. Yang, S., Yu, S., Ryu, J.M., Cho, J., Kyoung, W., Han, D.S., and Cho, M., "Nonlinear Multiscale Modeling Approach to Characterize Elastoplastic Behavior of CNT/polymer Nanocomposites Considering the Interphase and Interfacial Imperfection," International Journal of Plasticity, Vol. 41, 2013, pp. 124-146. https://doi.org/10.1016/j.ijplas.2012.09.010
  10. Seidel, G.D., and Lagoudas, D.C., "Micromechanical Analysis of the Effective Elastic Properties of Carbon Nanotube Reinforced Composites," Mechanics of Materials, Vol. 38, No. 8-10, 2006, pp. 884-907. https://doi.org/10.1016/j.mechmat.2005.06.029
  11. Bendsoe, M.P., and Kikuchi, N., "Generating Optimal Topologies in Structural Design Using a Homogenization Method," Computer Methods in Applied Mechanics and Engineering, Vol. 71, 1988, pp. 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  12. Han, Y., and Elliott, J., "Molecular Dynamics Simulations of the Elastic Properties of Polymer/carbon Nanotube Composites," Computational Materials Science, Vol. 39, 2007, pp. 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
  13. Wei, C.Y., Srivastava, D., and Cho, K.J., "Structural Ordering in Nanotube Polymer Composites," Nano Letters, Vol. 4, No. 10, 2004, pp. 1494-1952.
  14. Choi, H., Jung, H., Yu, J., and Shin, E.S., "Prediction of Thermos- mechanical Behavior for CNT/epoxy Composites Using Molecular Dynamics Simulation," Composites Research, Vol. 28, No. 5, 2015, pp. 260-264. https://doi.org/10.7234/composres.2015.28.5.260
  15. Yang, S., and Cho, M., "Scale Bridging Method to Characterize Mechanical Properties of Nanoparticle/polymer Nanocomposites," Applied Physics Letters, Vol. 93, No. 4, 2008, pp. 043111. https://doi.org/10.1063/1.2965486
  16. Qiu, Y.P., and Weng, G.J., "On the Application of Mori-Tanaka Theory Involving Transversely Isotropic Spheroidal Inclusions," International Journal of Engineering Science, Vol. 28, No. 11, 1990, pp. 1121-1137. https://doi.org/10.1016/0020-7225(90)90112-V
  17. Accelrys Inc. San Francisco.
  18. Sun, H., Mumby, S.J., Maple, J.R., and Hgler, A.T., "An abi initio CFF90 All-atom Force Field for Polycarbonates," Journal of American Chemical Society, Vol. 116, 1994, pp. 2978-2987. https://doi.org/10.1021/ja00086a030
  19. Plimpton, S., "Fast Parallel Algorithms for Short-range Molecular Dynamics," Journal of Computational Physics, Vol. 117, 1995, pp.1-19. https://doi.org/10.1006/jcph.1995.1039
  20. Varshney, V., Patnaik, S.S., Roy, A.K., and Farmer, B.L., "Molecular Dynamics Study of Epoxy-Based Networks: Cross-Linking Procedure and Prediction of Molecular and Material Properties," Macromolecules, Vol. 41, No. 18, 2008, pp. 6837-6842. https://doi.org/10.1021/ma801153e
  21. Hoover, W.G., "Canonical Dynamics: Equilibrium Phase-space Distributuions," Physical Review A, Vol. 31, 1985, pp. 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
  22. Hoover, W.G., "Constant-pressure Equations of Motion," Physical Review A, Vol. 34, 1986, pp. 2499-2500. https://doi.org/10.1103/PhysRevA.34.2499
  23. Eshelby, J.D., "The Determination of the Elastic Field of and Ellipsoidal Inclusion, and Related Problems," Proceedings of Royal Society of London A, 1957, pp. 376-396.
  24. Bhattacharya, B., and Lu, Q., "Effect of and Stone-Wales Defects on Mechanical Properties of Carbon Nanotubes Using Atomistic Simulation," Nanotechnology, Vol. 16, No. 4, 2005, pp. 555-566. https://doi.org/10.1088/0957-4484/16/4/037
  25. http://www.engineeringtoolbox.com/youn-modulus-d_417.html