DOI QR코드

DOI QR Code

침철석과 UVC-Lamp를 이용한 아비산염의 광촉매 산화

Photocatalytic Oxidation of Arsenite Using Goethite and UVC-Lamp

  • 전지훈 (경상대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 김성희 (경상대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 김순오 (경상대학교 지질과학과 및 기초과학연구소(RINS))
  • Jeon, Ji-Hun (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Kim, Seong-Hee (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Cho, Hyen-Goo (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU))
  • 투고 : 2017.06.14
  • 심사 : 2017.06.19
  • 발행 : 2017.06.28

초록

비소는 독성이 매우 큰 물질로 지하수 환경에서 산출빈도가 높다. 지하수 내 비소는 환원환경에서 무기비소인 아비산염의 형태로 존재하며, 산화한경에서 비산염의 형태로 존재한다. 아비산염은 비산염보다 독성이 높으며, 금속(수)산화물의 표면에 흡착이 잘 되지 않아 이동성이 높다. 이러한 이유로 독성이 높은 아비산염을 비산염으로 산화시켜 독성을 저감시키는 공정에 대한 연구가 수행되어져 왔다. 특히 광산화 공정은 운전이 간단하면서 경제적이며 효율이 높다고 알려져 있다. 본 연구에서는 광산화공정에서 기존에 광촉매로 주로 사용되어온 $TiO_2$를 대신하여 자연 상에서 산출되는 침철석을 광촉매로 이용하여 지하수 내에서 아비산염을 비산염으로 산화시키는 공정의 효율에 영향을 미치는 다양한 인자들을 평가하였다. 연구결과, 용존 양이온의 종류보다는 총 농도가 아비산염의 광촉매 산화에 영향을 미치는 것을 확인하였으며, pH가 높은 환경에서 아비산염의 광촉매 산화효율이 더욱 높게 나타나는 것을 확인하였다. 아비산염과 비산염이 공존할 경우, 흡착에 의한 비소의 제거는 아비산염과 비산염의 침철석에 대한 친화도에 따라 약간의 영향을 미치는 것으로 보이나, 아비산염의 광촉매 산화에는 영향을 미치지 않는 것으로 나타났다. 그리고 휴믹산은 아비산염의 광촉매 산화 공정간 수산화라디칼과 슈퍼옥사이드 라디칼과 같은 활성산소종과 반응하여 아비산염의 광촉매 산화 효율을 감소시키는 것으로 나타났다. 또한 아비산염의 광촉매 산화 공정간 전자 수용체로서 산소를 주입할시 가장 높게 효율이 증진되는 것을 확인할 수 있었다. 이러한 연구결과를 종합할 때, 공정의 최적화를 통하여 지하수 등의 수환경 내 존재하는 아비산염의 독성은 침철석을 이용한 광촉매 산화에 의하여 저감될 수 있을 것으로 판단된다.

Arsenic (As) is known to be the most toxic element and frequently detected in groundwater environment. Inorganic As exists as arsenite [As(III)] and arsenate [As(V)] in reduced and oxidized environments, respectively. It has been reported that the toxicity of arsenite is much higher than that of arsenate and furthermore arsenite shows relatively higher mobility in aqueous environments. For this reason, there have been numerous researches on the process for oxidation of arsenite to arsenate to reduce the toxicity of arsenic. In particular, photooxidation has been considered to be simple, economical, and efficient to attain such goal. This study was conducted to evaluate the applicability of naturally-occurring goethite as a photocatalyst to substitute for $TiO_2$ which has been mostly used in the photooxidation processes so far. In addition, the effects of several factors on the overall performance of arsenite photocatalytic oxidation process were evaluated. The results show that the efficiency of the process was affected by total concentration of dissolved cations rather than by the kind of those cations and also the relatively higher pH conditions seemed to be more favorable to the process. In the case of coexistence of arsenite and arsenate, the removal tendency by adsorption onto goethite appeared to be different between arsenite and arsenate due to their different affinities with goethite, but any effect on the photocatalytic oxidation of arsenite was not observed. In terms of effect of humic acid on the process, it is likely that the higher concentration of humic acid reduced the overall performance of the arsenite photocatalytic oxidation as a result of competing interaction of activated oxygen species, such as hydroxyl and superoxide radicals, with arsenite and humic acid. In addition, it is revealed that the injection of oxygen gas improved the process because oxygen contributes to arsenite oxidation as an electron acceptor. Based on the results of the study, consequently, the photocatalytic oxidation of aqueous arsenite using goethite seems to be greatly feasible with the optimization of process.

키워드

참고문헌

  1. Amstaetter, K., Borch, T., Casanova, P.L. and Kappler, A. (2010) Redox transformation of arsenic by Fe(II)-activated goethite($\alpha$-FeOOH). Environ. Sci. Technol., v.44, p.102-108. https://doi.org/10.1021/es901274s
  2. Bhandari, N., Reeder, R.J. and Strongin, D.R. (2011) Photoinduced oxidation of arsenite to arsenate on ferrihydrite. Environ. Sci. Technol., v.46, p.2783-2789.
  3. Bhandari, N., Reeder, R.J. and Strongin, D.R. (2012) Photoinduced oxidation of arsenite to arsenate in the presence of goethite. Environ. Sci. Techol., v.46, p.8044-8051. https://doi.org/10.1021/es300988p
  4. Cherry, J.A., Shaikh, A.U., Tallman, D.E. and Nicholson, R.V. (1979) Arsenic species as an indicator of redox conditions in groundwater. J. Hydrol., v.43, p.373-392. https://doi.org/10.1016/0022-1694(79)90182-3
  5. Desesso, I.M., Jacobson, C.F., Scialli, A.R., Farr, C.H. and Holson, J.F. (1998) An assessment of the developmental toxicity of inorganic arsenic. Rev. Toxicol., v.12, p.385-433.
  6. Ding, W., Wang, Y.J., Yu, Y.T., Zhang, X.Z., Li, J.J. and Wu, F. (2015) Photooxidation of arsenic(III) to arsenic(V) on the surface of kaolinite clay. J. Environ. Sci., v.36, p.29-37. https://doi.org/10.1016/j.jes.2015.03.017
  7. Dutta, P.K., Pehkonen, S.O., Sharma, V.K. and Ray, A.K. (2005) Photocatalytic oxidation of arsenic(?): Evidence of hydroxyl radicals. Environ. Sci. Technol., v.39, p.1827-1834. https://doi.org/10.1021/es0489238
  8. Fei, H., Leng, W.H., Li, X., Cheng, X.F., Xu, T.M., Zhang, J.Q. and Cao, C.N. (2011) Photocatalytic oxidation of arsenite over $TiO_2$: Is superoxide the main oxidant in normal air-saturated aqueous solutions? Environ. Sci. Technol., v.45, p.4532-4539. https://doi.org/10.1021/es200574h
  9. Henke, K. (2009) Arsenic: Environmental chemistry, health, threats and waste treatment. University of Kentuchky Center for Applied Energy Research. John Wiley, USA, p.569.
  10. Hug, S.J. and Canonica, L., Wegelin, M., Gechter, D. and Gunten, U.V. (2001) Solar oxidation and removal of arsenic at circumneutral pH in iron containing wasters. Environ. Sci. Technol., v.35, p.2114-2121. https://doi.org/10.1021/es001551s
  11. Hughes, M.F. (2002) Arsenic toxicity and potential mechanism of action. J. Toxicol., v.133, p.1-16.
  12. Jain, C. and Ali, I. (2000) Arsenic: occurrence, toxicity and speciation techniques. Water. Res., v.34, p.4304-4312. https://doi.org/10.1016/S0043-1354(00)00182-2
  13. Kim, S.H., Lee, S.W., Cho, H.H., Kim, Y.H. and Kim, S.O. (2014) $TiO_2$-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater. J. Miner. Soc. Korea, v.27, p.223-233. https://doi.org/10.9727/jmsk.2014.27.4.223
  14. Kim, S.H., Seol, J.W., Lee, W.C., Lee, S.W. and Kim, S.O. (2015) Photocatalytic oxidation of free cyanide using UV LED. J. Korean Soc. Environ. Eng., v.37, p.34-44. https://doi.org/10.4491/KSEE.2015.37.1.34
  15. Kim, S.O., Lee, W.C., Jeong, H.S. and Cho, H.G. (2009) Adsorption of arsenic on goethite. J. Miner. Soc. Korea, v.22, p.177-189.
  16. Lee, H.J. and Choi, W.Y. (2002) Photocatalytic oxidation of arsenite in $TiO_2$ suspension: Kinetic and mechanisms. Environ. Sci. Technol., v.36, p.3872-3878. https://doi.org/10.1021/es0158197
  17. Lee, S.Y., Baik, M.H., Roh, Y. and Oh, J.M. (2010) The effect of Fe-bearing minerals on the interaction between under-ground dissimilatory metal-reducing bacteria and dissolved uranium. J. Geological. Soc. Korea, v.46, p.357-366.
  18. Li, Y.A., Cai, X.J., Guo, J.W. and Na, P. (2014) UV-induced photoactive adsorption mechanism of arsenite by anatase $TiO_2$ with high surface hydroxyl group density. Colloids Surf. A, v.462, p.202-210. https://doi.org/10.1016/j.colsurfa.2014.09.011
  19. Ma, L. and Tu, S.X. (2011) Removal of arsenic from aqueous solution by two types of nano $TiO_2$ crystals. Environ. Chem. Lett., v.9, p.465-472. https://doi.org/10.1007/s10311-010-0303-1
  20. Moon, J.T., Kim, K.J., Kim, S.H., Jeong, C.S. and Hwang. G.S. (2008) Geochemical investigation on arsenic contamination in the alluvial ground-water of Mankyeong River Watershed. Econ. Environ. Geol., v.41, p.673-683.
  21. Neppolian, B., Celik, E. and Choi, H. (2008) Photochemical oxidation of arsenic(III) to arsenic(V) using peroxydisulfate ions as an oxidizing agent. Environ. Sci. Technol., v.42, p.6179-6184. https://doi.org/10.1021/es800180f
  22. Nico, P.S., Anastasio, C. and Zasoski, R.J. (2002) Rapid photo-oxidation of Mn(II) by humic substances. Geochim. et Cosmochim. Acta., v.66, p.4047-4056. https://doi.org/10.1016/S0016-7037(02)01001-3
  23. Ona-Nguema, G., Morin, G., Wang, Y., Foster, A.L., Juillot, F., Calas, G. and Brown, G.E. (2010) XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved $O_2$ via $Fe^{2+}$-mediated reactions. Environ. Sci. Technol., v.44, p.5416-5422. https://doi.org/10.1021/es1000616
  24. Ouvard, S., Simonnot, M.O., de Donato, P. and Sardin, M. (2002) Diffusion-controlled adsorption of arsenate on a natural manganese oxide. Ind. Eng. Chem. Res., v.41, p.6194-6199. https://doi.org/10.1021/ie020269m
  25. Ryu, H. and Choi, W. (2004) Effect of $TiO_2$ surface modifications on photocatalytic oxidation of arsenite: The role of superoxides. Environ. Sci. Technol., v.38, p.2928-2933. https://doi.org/10.1021/es034725p
  26. Schwertmann, U. and Cornell, R.M. (1991) Iron oxides in the laboratory: Preparation and characterization. Wiley-VCh publishers, New York, USA. p.188.
  27. Sharma, V.K. and Sohn, M. (2009) Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environ. Int., v.35, p.743-759. https://doi.org/10.1016/j.envint.2009.01.005
  28. Smedley, P.L and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem., v.17, p.517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
  29. Smith, A.H., Hopenhayn, C., Bates, M.M., Goeden, H.M., Picciotto, I.H., Duggan, H.M., Wood, R., Kosnett, M.J. and Smith, M.T. (1992) Cancer risks from arsenic in drinking water. Environ. Health Perspect., v.97, p.259-267. https://doi.org/10.1289/ehp.9297259
  30. Wang, Y.J., Xu. J., Li, J.J. and Wu, F. (2013a) Natural montmorillonite induced photooxidation of As(III) in aqueous suspensions: Roles and sources of hydroxyl and hydroperoxyl/superoxide radicals. J. Hazard. Mater., v.260, p.255-262. https://doi.org/10.1016/j.jhazmat.2013.05.028
  31. Wang, Y.J., Xu, J., Zhao, Y., Zhang, L., Xiao, M. and wu, F. (2013b) Photooxidation of arsenite by natural goethite in suspended solution. Environ. Sci. Pollut. Res. Int., v.20, p.31-38. https://doi.org/10.1007/s11356-012-1079-6
  32. Yamamuch, H.M and Flowler, B. (1994) Toxicity and metabolism of inorganic and methylated arsenicals. In: Nriagu JO (ed) arsenic in the environment part II. Human health and ecosystem effects. Willey. New York, p.320.
  33. Yang, H., Lin, W.Y. and Rajeschwar, K. (1999) Homogeneous and heterogeneous photo-catalytic reactions involving As(III) and As(V) species in aqueous media. J. Photochem. Photobiol., v.123, p.137-143. https://doi.org/10.1016/S1010-6030(99)00052-0
  34. Yoon, S.H. and Lee, J.H. (2005) Oxidation mechanism of As(III) in the UV/$TiO_2$ system: Evidence for a direct hole oxidation mechanism. Environ. Sci. Technol., v.39, p.9695-9701. https://doi.org/10.1021/es051148r
  35. Yoon, S.H., Oh, S.E., Yang, J.E., Lee, J.H., Lee, M.J., Yu, S.H. and Pak, D.W. (2009) $TiO_2$ photocatalytic oxidation mechanism of As(III). Environ. Sci. Technol., v.43, p.864-869. https://doi.org/10.1021/es801480u
  36. Yu, S., Wang, X., Zhang, R., Y, T., Ai, Y., Wen, T., Huang, W., Hayat, T., Alsaedi, A. and Wang, X. (2017) Complex roles of solution chemistry on graphene oxide coagulation onto titanium dioxide: Batch experiments, spectroscopy analysis and theoretical calculation. Sci. Rep., v.7, Art No. 39625.
  37. Yunus, M., Sohel, N., Kumar Hore, S. and Rahman, M. (2011) Arsenic exposure and adverse health effects: a review of recent findings from arsenic and health studies in Matlab, Bangladesh. Kaohsiung J. Med. Sci., v.27, p.371-376. https://doi.org/10.1016/j.kjms.2011.05.012