DOI QR코드

DOI QR Code

Changes in Starch Synthesis and the Characteristics of Photosynthate Translocation at High Temperature during the Ripening Stage in Barley

보리 등숙기 고온에 따른 전분합성 및 동화산물 전류 특성 변화

  • 이현석 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 황운하 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 김대욱 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 정재혁 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 안승현 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 백정선 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 정한용 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 윤종탁 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 이건휘 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 최경진 (농촌진흥청 국립식량과학원 작물재배생리과)
  • Received : 2017.02.20
  • Accepted : 2017.06.01
  • Published : 2017.06.30

Abstract

This experiment was conducted to evaluate the effects of high temperature on the stem, leaf and grain of barley during the ripening period and to provide information for the development of high-temperature cultivation techniques and adaptive varieties. We used an artificial climate control facility, to provide a temperature $3^{\circ}C$ higher than the normal average temperature during the ripening stage. Although the maximum rate of starch synthesis was increased at high temperature by approximately 11%, the starch content was decreased, because the period of starch synthesis ended 4 days earlier. As in the case of starch synthesis, the expression of genes related to starch synthesis was increased at the early ripening stage in the high temperature treatment, however, the duration of expression tended to decrease rapidly. Furthermore, the partitioning rate of assimilation products in the panicle increased to a greater extent in the high temperature treatment than in the control. In contrast, for the stem and leaf, the partitioning rate of assimilation products decreased more rapidly in the high temperature treatment than in the control. On the basis of these results, it can be considered that the translocation rate of assimilation products increased to a greater extent in the high temperature treatment than in the control at the early ripening stage. These results indicate that the decrease in grain weight at high temperature during the ripening stage is attributable to an increase in the speed of starch synthesis at high temperature, but the increase in ripening speed does not compensate for the shortening of the ripening period. Finally to develop varieties and cultivation techniques suited to high temperature, we need to focus on physiological characteristics related to the duration of starch synthesis.

등숙기 고온에 따른 전분합성 및 동화산물 전류 특성에 미치는 영향을 분석한 결과는 다음과 같다. 1. 등숙기 평균온도가 약 $3^{\circ}C$ 상승함에 따라 등숙기간은 약 5일정도 단축되었으며, 천립중이 약 4.2 g 정도 감소하였고, 전분함량이 감소함에 따라 상대적으로 단백질 함량이 증가하는 경향을 보였다. 2. 등숙기 고온($+3^{\circ}C$)에 따라 전분합성 최대속도는 약 11%정도 증가하였지만, 전분합성속도가 최대가 되는 시점은 약 3일, 전분합성 완료 시점은 약 4일정도 앞당겨지는 경향을 보였다. 3. 전분합성 각 단계에 관여하는 유전자의 발현양상은 앞에서의 전분합성과 마찬가지로 고온처리에서 초기 발현량이 증가하였지만, 발현 지속정도가 빠르게 감소하는 경향을 확인하였으며, 특히 soluble starch synthase의 감소가 두드러졌다. 4. 동화산물의 이삭분배 속도는 전분합성속도와 마찬가지로 고온처리구에서 증가하였지만, 줄기 및 지엽에서의 분배비율은 고온처리구에서 급격하게 감소한 결과를 보아 동화산물의 전류속도가 고온처리구에서 빨라진 것으로 생각된다. 5. 엽신의 노화속도(Nr)는 온도가 상승할수록 크게 증가하였음을 확인할 수 있었으며, 노화속도가 등숙이 거의 완료된 이후에 크게 증가하는 것으로 보아, 고온에 따른 등숙기간의 단축은 엽신의 노화 기간에 영향을 받지 않는 것으로 생각된다.

Keywords

References

  1. Bhullar, S. and C. F. Jenner. 1985. Differential responses to high temperatures of starch and nitrogen accumulation in the grain of four cultivars of wheat. Australian Journal of Plant Physiology. 12 : 363-375. https://doi.org/10.1071/PP9850363
  2. Black, J. W. and P. Leff. 1983. Operational models of pharmacological agonism. Proc. R, Soc. Lond. B. 220: 141-162. https://doi.org/10.1098/rspb.1983.0093
  3. Blum, A. 1998. Improving wheat grain filling under stress by stem reserve mobilosation. Euphytica. 100 : 77-83. https://doi.org/10.1023/A:1018303922482
  4. Chang, S., J. Puryear, and J. Cairney. 1993. A simple and efficient method for isolating rna from pine trees. Plant Molecular Biology. 11 : 113-116. https://doi.org/10.1007/BF02670468
  5. Gelang, J., H. Pleijel, E. Slid, H. Danielsson, S. Younus, and G. Sellden. 2000. Rate and duration of grain filling in relation to flag leaf senescence and grain yield in spring wheat(Triticum aestivum) exposed to different concentrations of ozone. Physiol Plant. 110 : 366-375. https://doi.org/10.1034/j.1399-3054.2000.1100311.x
  6. Guerrero, M. G., and M. V. Losada. 1981. The assimilatory nitrate reducing system and its regulation. ann. Rev. Plant Phisol. 32 : 169-204. https://doi.org/10.1146/annurev.pp.32.060181.001125
  7. Hecht, B. C. 1979. Calcium deficiency and plant ultrastructure. Soil. Sci. Plant anal. 10: 67-81. https://doi.org/10.1080/00103627909366879
  8. Dormling, I., A. Gustafsson, and D. vonwettstein. 1969. Phytotron cultivation of bounus barley: the control of maturation and grain quality. Hereditas. 63 : 415-428.
  9. Jianchang, Y., Z. Jianghua, W. Zhiqing, Z. Qingsen, and L. Liu. 2004. Activities of fructan and sucrose metabolizing enzymes in wheat stems. Planta. 220 : 331-343. https://doi.org/10.1007/s00425-004-1338-y
  10. Kotak, S., J. Larkindale, P. Koskull-Dorling, E. Vierling, and K. D. Scharf. 2007. Complexity of the heat stress response in plants. Current Opinion in Plant Biology. 10 : 310-316. https://doi.org/10.1016/j.pbi.2007.04.011
  11. Lee, H. S., D. W. Kim, W. H. Hwang, J. H. Jeong, S. H. Ahn, J. S., Baek, J. R. Kang, H. Y. Jeong, J. T. Yun, G. H. Lee, and K. J. Choi. 2016. Change of Physicochemical Properties in Barley Kernels By High Temperature During the Ripening Stage. J. Korean Soc. Int. Agric. 28(3) : 358-363. https://doi.org/10.12719/KSIA.2016.28.3.358
  12. Lim, P. O., H. J. Kim, and H. G. Nam. 2007. Leaf senescence. Annu. Rev. Plant. Biol. 58 : 115-136. https://doi.org/10.1146/annurev.arplant.57.032905.105316
  13. Liu, P. W., Z. Guo, H. Jiang, Pu, C., Feng, X., Zhu, Y., Peng, A., Kuang, and C. R. Little. 2011. Effects of high temperature after anthesis on starch granules in grains of wheat(Triticum aestivum L.); Journal of Agricultural Science, 149 : 159-169. https://doi.org/10.1017/S0021859610001024
  14. Zamani, M. M., M. Nabipour, and M. Meskarbashee. 2014. Stem water soluble carbohydrate remilization in wheat under head stress during the grain filling. Int. J. Agric. Biol. 16 : 401-405.
  15. Vignjevic, M., X. Wang, J. E. Olesen, and B. Wollenweber. 2015. Tratits in spring wheat cultivars associated with yield loss caused by a heat stress episode after anthesis. J Agro Crop Sci. 201 : 32-48. https://doi.org/10.1111/jac.12085
  16. Nakano, H., A. Maikino, and T. Mae. 1995. Effects of panicle removal on the photosynthesis characteristics of the flag leaf of rice plant during the ripening stage. Plant Cell Physiol. 36 : 453-659.
  17. Nam, Y. I., B. C. Koo, and K. B. Youn. 1991. Varietal differences of leaf senescence and photosynthate translocation rate during grain filling period in barley. Korea J. Crop Sci. 36(2) : 166-173.
  18. Arnd S. and G.-Q. Tang. 1999. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Elsevier Science. 4(10) : 401-407.
  19. Tashiro, T. and I. F. Wardlaw. 1989. A comparison of the effect of high temperature on grain development in wheat and rice. Ann. Bot. 18 : 259-265.
  20. Tomas, D. S. 2005. effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell and Environment. 28 : 269-277. https://doi.org/10.1111/j.1365-3040.2005.01324.x
  21. Verhulst, P. F. 1838. Notice sur la loi que la population suit dans son accroissement. Curr. Math. Phys. 10 : 113.
  22. Yang, J., J. Zhang, Z. Wang, Q. Zhu, and W. Wan. 2001. hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol. 127 : 316-323.
  23. Yamakawa, H., T. Hirose, M. Kuroda, and T. Yamaguchi. 2007. Comprehensive expression profiling of rice grain fillingrelated genes under high temperature using DNA microarray: Plant Physiology. 144 : 258-277. https://doi.org/10.1104/pp.107.098665