DOI QR코드

DOI QR Code

Dual effect of Low- frequency Electromagnetic Field on Muscle Histopathology of Caspian Sea Cyprinus carpio

  • Samiee, Farzaneh (Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University) ;
  • Samiee, Keivandokht (Faculty of Biological Sciences, Shahid Beheshti University)
  • 투고 : 2016.11.16
  • 심사 : 2017.05.29
  • 발행 : 2017.06.30

초록

The effect of electromagnetic field on aquatic organisms has received little attention. In the current study, the effect of 50Hz electromagnetic field on muscle histopathology of Caspian Sea Cyprinus carpio, a species of economic importance, was investigated. A total of 120 healthy fish were used in this study. They were classified randomly in one of two groups as follows: Control or unexposed EMF group and experimental group with 5 different magnetic field intensities (0.1, 1, 3, 5 and 7mT) at 2 different exposure times including 30 and 60 minutes. Fish in the experimental group were exposed only once. Two weeks after exposure, dorsal muscles sectioned transversely, stained and were examined using a light microscope. Histopathologic assessments showed significant difference between control and EMF exposed groups at both 30 min. (p<0.01) and 60 min. (p<0.001) exposure times. We report for the first time that electromagnetic field in interaction with muscular tissue of Cyprinus carpio exhibits a dual effect which depends on the field intensity, and exposure time. At short exposure time (30 min.), EMF stimulates muscle growth process. At longer exposure time (60 min.), EMF can damage muscle tissue and result in muscle necrosis. More research is required to elucidate precise mechanisms involved in muscle hypertrophy and pathologic changes.

키워드

참고문헌

  1. Adachi M, Liu Y, Fujii K, Calderwood SK, Nakai A, Imai K, Shinomura Y. (2009). Oxidative Stress Impairs the Heat Stress Response and Delays Unfolded Protein Recovery. PLOS ONE 4(11): e7719. doi:10.1371/journal.pone.0007719.
  2. Akdag MZ, Dasdag S, Ulukaya E, Uzunlar AK, Kurt MA, Taskin A.( 2010). Effects of extremely low-frequency magnetic field on caspase activities and oxidative stress values in rat brain. Biol Trace Elem Res 138(1-3): 238-249. https://doi.org/10.1007/s12011-010-8615-3
  3. Aleem SB, Hussain MM, Faroog Y. (2013). Levo-Carnitine reduces oxidative stress and improves contractile functions of fast muscles in type 2 diabetic rats. Iranian biomedical journal 17(1): 29-35.
  4. Arbogast S1, Smith J, Matuszczak Y, Hardin BJ, Moylan JS, Smith JD, Ware J, Kennedy AR, Reid MB. (2007). Browman-Birk inhibitor concentrate prevents atrophy, weakness, and oxidative stress in soleus muscle of hindlimb-unloaded mice. J Appl Physiol; 102: 956-964. https://doi.org/10.1152/japplphysiol.00538.2006
  5. Aucello M, Dobrowolny G, Musaro A. (2009). Localized accumulation of oxidative stress causes muscle atrophy through activation of an autophagic pathway. Autophagy 5(4): 527-9. https://doi.org/10.4161/auto.5.4.7962
  6. Betancor MB, Caballero MJ, Benitez-Santana T, Saleh R, Roo J, Atalah E, Izquierdo M. (2013). Oxidative status and histological changes in sea bass larvae muscle in response to high dietary content of docosahexaenoic acid DHA. J Fish Dis 36(5): 453-65. https://doi.org/10.1111/j.1365-2761.2012.01447.x
  7. Bevelhimer MS, Cada GF. (2013). Behavioral responses of representative freshwater fish species to electromagnetic fields. Transactions of the American Fisheries Society, 142: 3, 802-813. https://doi.org/10.1080/00028487.2013.778901
  8. Blank M. (2012). The Cellular Stress Response: EMFDNA Interaction. Prepared for the BioInitiative Working Group. Section7.
  9. Blank M, Goodman R. (2009). Electromagnetic fields stress living cells. Pathophysiology 16 (2-3):71-8. https://doi.org/10.1016/j.pathophys.2009.01.006
  10. Bochert R, Zettler ML. (2004). Long- term exposure of several marine benthic animals to static fields. Bio electromagnetics 25: 498-502.
  11. Bonaldo P, Sandri M. (2013). Cellular and molecular mechanisms of muscle atrophy. Disease models & Mechanisms 6: 25-39. https://doi.org/10.1242/dmm.010389
  12. Buck M, Chojkier M. (1996). Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J. 15: 1753-1765.
  13. Canseven AG, Coskun S, Seyhan N. ( 2008). Effects of various extremely low frequency magnetic fields on the free radical processes, natural antioxidant activities in the heart and liver tissues. Indian Journal of Biochemistry & Biophssics 45: 326-331.
  14. Cheon S, Park I, Kim M. (2012). Pulsed electromagnetic field elicits muscle recovery via increase of HSP 70 expression after crush injury of rat skeletal muscle.J.Phys.Ther.Sci 24: 589-592. https://doi.org/10.1589/jpts.24.589
  15. Ciejka E, Skibska B, Kleniewska P, Goraca A. (2010). Influence of low frequency magnetic field on chosen parameters of oxidative stress in rat's muscles. Pol Merkur Lekarski. 29(174):361-4.
  16. Consales C, Merla C, Marino C, Benassi B. (2012). Electromagnetic fields, oxidative stress, and neurodegeneration. International journal of cell biology. Volume 2012, Article ID 683897, 16 pages.
  17. Cuppen JJM, Wiegertjes GF, Lobee HWJ, Savelkoul HFJ, Elmusharaf MA, Beynen AC, Grooten HNA, Smink W.( 2007). Immune stimulation in fish and chicken through weak low frequency electromagnetic fields. Environmentalist 27, Issue 4, 577-583. https://doi.org/10.1007/s10669-007-9055-2
  18. Di Carlo A, White N, Guo F, Garrett P, Litovitz T. (2002). Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection. J Cell Biochem. 84(3):447-54. https://doi.org/10.1002/jcb.10036
  19. Fabbri E, Capuzzo A, Moon TW. (1998). The role of circulating catecholamines in the regulation of fish metabolism: An overview. Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. 120: 177-192. https://doi.org/10.1016/S0742-8413(98)10017-8
  20. Formicki K, Winnicki A. (1998). Reactions of fish embryos and larvae to of constant magnetic fields. Italian J. Zool. 65, 479-482. https://doi.org/10.1080/11250009809386870
  21. Gurcu B, Yildiz S, Koca YB, Koca S. (2010). Investigation of histopathological and cytogenetic effects of heavy metals pollution on Cyprinus carpio (Linneaus, 1758) in the GOlmarmara Lake, Turkey. Journal of Animal and Veterinary Advances 9(4): 798-808. https://doi.org/10.3923/javaa.2010.798.808
  22. Hardin BJ, Campbell KS, Smith JD. (2008). TNF-alpha acts via TNFR1 and muscle- derived oxidants to depress myofibrillar force in murine skeletal muscle. J Appl Physiol 104: 694-699. https://doi.org/10.1152/japplphysiol.00898.2007
  23. Hart V, KustaT, Nemec P, Blahova V, Jezek M, Novakova P, Begall S, Cerveny J, Hanzal V, Malkemper EP, Stipek K , Vole C, Burda H. (2012). Magnetic Alignment in Carps: Evidence from the Czech Christmas Fish Market. PLOS One 7(12): e51100 doi: 10.1371/journal.pone.0051100. Epub 2012 Dec 5.
  24. Hellinger J, Hoffmann KP. (2009). Magnetic field perception in the Rainbow Trout, Oncorhynchus mykiss. Journal of Comparative Physiology A- Neuroethology, Sensory, Neural, and Behavioral.
  25. Kaijura SM. (2003). Electroreception in neonatal bonnet head sharks, Sphyrna tiburo. Marine biology 143: 603-611. https://doi.org/10.1007/s00227-003-1099-3
  26. Kalmijn AJ. (1982). Electric and magnetic field detection in elasmobranch fishes. Science 218, no.4575: 916-918. https://doi.org/10.1126/science.7134985
  27. Kee HJ, Eom GH, Joung H, Shin S, Kim JR, ChoYK, Choe N, Sim BW, Jo D, Jeong MH, Kim KK, Seo JS, Kook H. (2008). Activation of Histone Deacetylase 2 by Inducible Heat Shock Protein 70 in Cardiac Hypertrophy. Circulation Research 103: 1259-1269. https://doi.org/10.1161/01.RES.0000338570.27156.84
  28. Kenneth J, Lohmann KJ and Sonke J. (2000). The neurobiology of magnetoreception in vertebrate animals. Trends Neurosci 23(4): 153-9. https://doi.org/10.1016/S0166-2236(99)01542-8
  29. Khater ZZK, Ibraheim MH. ( 2015). Ecological studies on the effect of magnetic field on water. Int. J. Curr. Res. Aca. Rev 3 (8), pp. 262-279.
  30. Kovacic P, Somanathan R. (2010). Electromagnetic fields: mechanism, cell signaling, other bioprocess, toxicity, radicals, antioxidants and beneficial effects. Journal of Receptors and Signal Transduction. Volume 30, Issue 4.
  31. Krylov VV, Izyumov G, Izvekov EI, Nepomnyasshchikh VA. (2014). Magnetic fields and fish behavior. Biology Bulletin Reviews l4(3): 222-231. https://doi.org/10.1134/S2079086414030049
  32. Krzemieniewski M, Teodorowicz M, Debowski M, Pesta J. (2004). Effects of a constant magnetic field on water quality and rearing of European sheatfish Silurus glanis L. larvae. Aquacult. Res 35: 568-573. https://doi.org/10.1111/j.1365-2109.2004.01054.x
  33. Kultz D. (2005). Molecular and evolutionary basis of the cellular stress response. Annual Reviews of Physiology 67: 225-257. https://doi.org/10.1146/annurev.physiol.67.040403.103635
  34. McMurray G. (2007).Wave energy ecological effects workshop ecological assessment briefing paper. Hatfield marine science center, Oregan State University. October 11-12.
  35. Meyer CG, Holland KN, Papastamatiou YP. (2005). Sharks can detect changes in the geomagnetic field. Journal of the Royal Society Interface 2: 129-130. https://doi.org/10.1098/rsif.2004.0021
  36. Milton L, Bull A, Schroeder D. (2012). EMF and marine organisms, 28-29.
  37. Miyabara, EH, Nascimento,TL, Rodrigues,DC, Moriscot, AS, Davila,WF, Aitmou,Y., Detombe PP, Mestril R. (2012). Overexpression of inducible70-kDa heat shock protein in mouse improves structural and functional recovery of skeletal muscles from atrophy. Pflugers Arch. 463: 733-741. https://doi.org/10.1007/s00424-012-1087-x
  38. Moylan JS, Reid MB. (2007). Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35: 411-429. https://doi.org/10.1002/mus.20743
  39. Musaro A1, Fulle S, Fano G. (2010). Oxidative stress and muscle homeostasis. Curr Opin Clin Nutr Metab Care 13(3): 236-42. https://doi.org/10.1097/MCO.0b013e3283368188
  40. Musaro A1, Fulle S. (2009). The role of oxidative stress in the physiopathology of skeletal muscle. In: Balsano C, editor. Oxidative stress, dysregulation of cell homeostasis and induction of cell transformation. Kerala, India: research Signopost 1-18.
  41. Nishi T, Kawanura G. (2005). Magnetosensitivity in the darkbanded rockfish Sebastes inermis. Nippon Suisan Gakkaishi 72(1): 27-33.
  42. Nishi T. (2006). Studies on the magnetosensitivity and magnetocompass orientation in the Japanese eel Anguilla japonica. Fish 55(2): 107-159.
  43. Nishi T, Kawamura G., Matsumoto K. (2004). Magnetic sense in the Japanese eel, Anguilla japonica, as determined by conditioning and electrocardiography. The Journal of Experimental Biology 207: 2965-2970. https://doi.org/10.1242/jeb.01131
  44. Ohman MC, Sigray P, Westerberg H. (2007).Offshore windmills and the effects of electromagnetic fields on fish. Ambio 36(8): 630-633. https://doi.org/10.1579/0044-7447(2007)36[630:OWATEO]2.0.CO;2
  45. Ozdemirler Erata G, Kanbagli O, Durlanik O, Bulut T, Toker G, Uysal M. (2005). Induced oxidative stress and decreased expression of inducible heat shock protein 70 (ihsp70) in patients with colorectal adenocarcinomas. Jpn J Clin Oncol 35(2): 74-8. https://doi.org/10.1093/jjco/hyi022
  46. Poltronieri C, Negrato E., Bertotto D., Majolini D., Simontacchi C., Radaelli G. (2008). Immunohistochemical localization of constitutive and inducible Heat Shock Protein 70 in carp (Cyprinus carpio) and trout (Oncorhynchus mykiss) exposed to transport stress. European Journal of Histochemistry. vol. 52 issue 3 (July-September): 191-198. https://doi.org/10.4081/1211
  47. Powers SK, Kavazis AN, McClung JM. (2007). Oxidative stress and disuse muscle atrophy. J Appl Physiol 102: 2389-2397. https://doi.org/10.1152/japplphysiol.01202.2006
  48. Raeker MO, Shavit JA, Dowling JJ, Michele DE, and Russel W. (2014). Membrane-myofibril cross-talk in myofibrillogenesis and in muscular dystrophy pathogenesis: Lessons from the Zebrafish. Frontiers in Physiology Volume 5:14. Published online 2014 January 28. doi: 10.3389/fphys.2014.00014.
  49. Rodriguez-De la Fuente AQ, Alcocer-Gonzalez JM, Antonio Heredia-Rojas J, Rodriguez-Padilla C, Rodriguez-Flores LE, Santoyo- Stephano MA, Castaneda- Garza E, Tamez-Guerra RS. (2012). Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study. www.cellbiolintrep.org & volume19 (1) art: e00014.
  50. Senf SM. Skeletal muscle heat shock protein70: diverse functions and therapeutic potential for wasting disorders. (2013). Perspective article Volume 4, Article 330. www.frontiersin.org.
  51. SimkO M. (2007). Cell type specific redox status is responsible for diverse electromagnetic field effects. Current Medicinal Chemistry 14(10): 1141-1152. https://doi.org/10.2174/092986707780362835
  52. Steinberg SF. (2013). Oxidative stress and sarcoplasmic proteins. Circ Res.18; 112(2): 393-405. https://doi.org/10.1161/CIRCRESAHA.111.300496
  53. Tokalov SV, Gutzeit HO. (2004). Weak electromagnetic fields (50 Hz) elicit a stress response in human cells. Environ Res 94(2): 145-51. https://doi.org/10.1016/S0013-9351(03)00088-4
  54. Walker MM. (2003). Sensory system, perception, and learning, magnetic sense in fishes. Current Opinion in Neurobiology 12: 735-744.
  55. Walker MM, Kirschvink JL, Chang SBR, Dizon AE. (1984). A candidate magnetic sense organ in the yellowfin tuna, Thunnus albacares. Science 224: 751-753. https://doi.org/10.1126/science.224.4650.751
  56. Westerberg H. (1999). Effect of HVDC cables on eelorientation. Technische Eingriffe in Marine Lebensraume, pp 1-6. Insel Vlim, Sweden. As cited in Gill(2005) Offshore Renewable Energy: EcologicalImplications of Generating Electricity in the CoastalZone. Journal of Applied Ecology 42: 605-615.
  57. Wiltschko W, Wiltschko R. (2005). Magnetic orientation and magnetoreception in birds and other animals. Journal of Comparative Physiology A- Neuroethology, Sensory, Neural, and Behavioral Physiology 191(8): 675-693. https://doi.org/10.1007/s00359-005-0627-7
  58. Yano A, Ogura M, Sato A, Sakak Y, Shimizu Y, Baba N, Nagasawa K. (1997). Effect of modified magnetic field on the ocean migration of maturing chum salmon, Oncorhynchus keta. Marine Biology 129(3): 523-530. https://doi.org/10.1007/s002270050193