DOI QR코드

DOI QR Code

Mg-Ni 금속 간 화합물 나노입자의 형성과 수소저장 특성

Formation and Hydrogen Absorption Properties of Intermetallic Mg-Ni Compound Nanoparticles

  • BAE, YOOGEUN (Department of Mechanical Engineering, Graduate School Kumoh National Institute of Technology) ;
  • HWANG, CHULMIN (School of Engineering, Nagasaki University) ;
  • KIM, JONGSOO (Busan Technical Center of Automotive Parts, Korea Institute of Mechinery & Materials) ;
  • DONG, XING LONG (School of Materials Science and Engineering, Dalian University of Technology) ;
  • KIM, SEWOONG (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • JUNG, YOUNGUAN (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 투고 : 2017.03.30
  • 심사 : 2017.06.30
  • 발행 : 2017.06.30

초록

Mg-Ni nanoparticles were synthesized by a physical vapor condensation method (DC arc-discharge) in a mixture of argon and hydrogen atmosphere, using compressed mixture of micro powders as the raw materials. The crystal phases, morphology, and microstructures of nanoparticles were analyzed by means of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found that the intermetallic compounds of $Mg_2Ni$ and $Mg_2Ni$ formed with existence of phases of Mg, Ni, and MgO in Mg-Ni nanoparticles. After one cycle of hydrogen absorption/desorption process (activation treatment), Mg-Ni nanoparticles exhibited excellent hydrogen absorption properties. $Mg_2Ni$ phase became the main phase by aphase transformation during the hydrogen treatments. The phenomenon of refinement of grain size in the nanoparticle was also observed after the hydrogen absorption/desorption processes, which was attributed to the effect of volume expansion/shrinkage and subsequent break of nanoparticles. Maximum hydrogen absorption contents are 1.75, 2.21 and 2.77 wt.% at 523, 573 and 623 K, respectively.

키워드

참고문헌

  1. J. J. Reilly and R. H. Wiswall, "Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4", Inorg. Chem. Vol. 7, 1968, p. 2254. https://doi.org/10.1021/ic50069a016
  2. E. Grigorova, M. Khristov, M. Khrussanova, J. L. Bobetb, and P. Pesheva, "Effect of additives on the hydrogen sorption properties of mechanically alloyed composites based on Mg and Mg2Ni" Int. J. Hydrogen Energy, Vol. 30, 2005, p. 1099. https://doi.org/10.1016/j.ijhydene.2004.10.018
  3. Y. Feng, L. F. Jiao, H. T. Yuan, and M. Zhao, "Effect of Al and Ce substitutions of the electrochemical properties of amorphous MgNi-based alloy electrodes", Int. J. Hydrogen Energy, Vol. 32, 2007, p. 1701. https://doi.org/10.1016/j.ijhydene.2006.11.034
  4. X. L. Wang, N. Haraikawa, and S. Suda, "A study of the surface composition and structure of fluorinated Mg-based alloys", J. Alloy Compd., Vol. 231, 1995, p. 397. https://doi.org/10.1016/0925-8388(95)01854-9
  5. M. D. Hampton and J. K. Lomness, "Water activation of Mg2Ni for hydrogenuptakeOriginal Research Article", Int. J. Hydrogen Energy, Vol. 24, 1999, p. 175. https://doi.org/10.1016/S0360-3199(98)00060-3
  6. A. Zaluska, L. Zaluski, and J. O. Strom-Olsen, "Nanocrystalline magnesium for hydrogen storage", J. Alloy Compd., Vol. 288, 1999, p. 217. https://doi.org/10.1016/S0925-8388(99)00073-0
  7. F. C. Gennari, F. J. Castro, and G. Urretavizcaya, "Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying", J. Alloy Compd., Vol. 321, 2001, p. 46. https://doi.org/10.1016/S0925-8388(00)01460-2
  8. J. Graetz and J. J. Reilly, "Nanoscale Energy Storage Materials Produced by Hydrogen-Driven Metallurgical Reactions", Advanced Engineering Materials, Vol. 7, 2005, p. 597. https://doi.org/10.1002/adem.200500028
  9. M. Terzieva, M. Khruesanova, and P Peshev, "Hydriding and dehydriding characteristics of Mg-LaNi5 composite materials prepared by mechanical alloying", J. Alloy Compd., Vol. 267, 1998, p. 235. https://doi.org/10.1016/S0925-8388(97)00556-2
  10. H. Miyaoka, T. Ichikawa, S. Isobe, and H. Fujii, "Hydrogen storage properties of nano-structural carbon and metal hydrides composites", Physica B, Vol. 383, 2006, p. 51. https://doi.org/10.1016/j.physb.2006.03.052
  11. D. Sun, H. Enoki, M. Bououdina, and E. Akiba, "Phase components and hydriding properties of the sintered Mg-xwt.% LaNi5 (x=20-50) composites", J. Alloys Compd., Vol. 282, 1999, p. 252. https://doi.org/10.1016/S0925-8388(98)00836-6
  12. V. Berube, G. Radtke, M. Dresselhaus, and G. Chen, "Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review", Int. J. Energy Res., Vol. 31, 2007, p. 637. https://doi.org/10.1002/er.1284
  13. I. Saita, L. Q. Li, K. Saito, and T. Akiyama, "Hydriding combustion synthesis of Mg2NiH4", J. Alloys Compd., Vol. 356-357, 2003, p. 490. https://doi.org/10.1016/S0925-8388(03)00230-5
  14. X. L. Dong, Z. D. Zhang, X. G. Zhao, Y. C. Chuang, S. R. Jin, and W. M. Sun, "The preparation and characterization of ultrafine Fe-Ni particles", J. Mater. Res., Vol. 14, 1999, p. 398. https://doi.org/10.1557/JMR.1999.0058
  15. G. Liang, S. Boily, J. Huot, A. V. Neste, and R. Schulz, "Mechanical alloying and hydrogen absorption properties of the Mg-Ni system", J. Alloy Compd., Vol. 267, 1998, p. 302. https://doi.org/10.1016/S0925-8388(97)00533-1
  16. T. Z. Si, D. M. Liu, and Q. A. Zhang, "Microstructure and hydrogen storage properties of the laser sintered Mg2Ni alloy", Int. J. Hydrogen Energy, Vol. 32, 2007, p. 4912. https://doi.org/10.1016/j.ijhydene.2007.07.009
  17. M. H. G. Jacob and P. J. Spencerb, "A critical thermodynamic evaluation of the system MG-NI", CALPHAD, Vol. 22, 1998, p. 513. https://doi.org/10.1016/S0364-5916(99)00008-5
  18. S. Yu, D. M. Li, H. P. Sun, H. D. Li, H. B. Yang, and G. T. Zou, "Microanalysis of single-phase AlN nanocrystals and AlN-Al nanocomposites prepared by DC arc-discharge", J. Cryst. Growth, Vol. 183, 1998, p. 284. https://doi.org/10.1016/S0022-0248(97)00425-9
  19. P. Selvam, B. Viswanathan, and V. Srinivasan, "XPS and XAES studies on hydrogen storage magnesium-based alloys", Int. J. Hydrogen Energy, Vol. 14, 1989, p. 899. https://doi.org/10.1016/0360-3199(89)90077-3
  20. J. L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, "Study of Mg-M (M=Co, Ni and Fe) mixture elaborated by reactive mechanical alloying - hydrogen sorption properties", Int. J. Hydrogen Energy, Vol. 25, 2000, p. 987. https://doi.org/10.1016/S0360-3199(00)00002-1
  21. H. Y. Shao, T. Liu, X. G. Li, and L. F. Zhang, "Preparation of Mg2Ni intermetallic compound from nanoparticles", Scripta Mater, Vol. 49, 2003, p. 595. https://doi.org/10.1016/S1359-6462(03)00292-6
  22. V. Y. Gertsman and R. Birringer. "On the room-temperature grain growth in nanocrystalline copper", Scripta Metall. Mater., Vol. 30, 1994, p. 577. https://doi.org/10.1016/0956-716X(94)90432-4
  23. H. Gleiter, "Nanostructured materials: basic concepts and microstructure", Acta Mater., Vol. 48, 2000, p. 1. https://doi.org/10.1016/S1359-6454(99)00285-2
  24. L. Z. Ouyang, S. Y. Ye, H. W. Dong, and M. Zhu, "Effect of interfacial free energy on hydriding reaction of Mg-Ni thin films", Appl. Phys. Lett., Vol. 90, 2007, Art No. 021917.
  25. R. B. Schwarz and A. G. Khachaturyan, "Thermodynamics of Open Two-Phase Systems with Coherent Interfaces", Phys. Rev. Lett., Vol. 74, 1995, p. 2523. https://doi.org/10.1103/PhysRevLett.74.2523
  26. T. Kuji, H. Nakano, and T. Aizawa, "Hydrogen absorption and electrochemical properties of Mg2-xNi (x=0-0.5) alloys prepared by bulk mechanical alloying", J. Alloys Compounds, Vol. 330-332, 2002, p. 590, https://doi.org/10.1016/S0925-8388(01)01594-8
  27. Y. Q. Tong, L. Z. Ouyang, and M. Zhu, "Effect of Ni on Mg based hydrogen storage alloy Mg3Nd", Rare Metals, Vol. 25, 2006, p. 289. https://doi.org/10.1016/S1001-0521(07)60091-6