FACTORIZATION OF CERTAIN SELF-MAPS OF PRODUCT SPACES

Sangwoo Jun and Kee Young Lee

Abstract

In this paper, we show that, under some conditions, self-maps of product spaces can be represented by the composition of two specific self-maps if their induced homomorphism on the i-th homotopy group is an automorphism for all i in some section of positive integers. As an application, we obtain closeness numbers of several product spaces

1. Introduction

For a connected pointed topological space X, let $\mathcal{E}(X)$ denote the set of homotopy classes of pointed self-maps of X that are homotopy equivalences. Then, $\mathcal{E}(X)$ is a group with a group operation given by a composition of homotopy classes. Let $[X, X]$ be the set of all based homotopy classes of self-maps of X. When $[X, X]$ is given by a composition of homotopy classes, the set is a monoid. Choi and Lee [5] studied certain submonoid of $[X, X]$ containing $\mathcal{E}(X)$ as a set. If $\mathcal{A}_{\#}^{k}(X)$ denotes the set of homotopy classes of self-maps of X that induce an automorphism of $\pi_{i}(X)$ for $0 \leq i \leq k$, then $\mathcal{A}_{\#}^{k}(X)$ is a submonoid of $[X, X]$ with an operation given by a composition of homotopy classes for any nonnegative integer k. If $k=\infty$, we simply denote $\mathcal{A}_{\#}^{\infty}(X)$ as $\mathcal{A}_{\#}(X)$. By definition, $\mathcal{A}_{\#}^{n}(X) \subseteq \mathcal{A}_{\#}^{m}(X)$ if $n \geq m$. Therefore, we have the following descending series:

$$
\mathcal{E}(X) \subseteq \mathcal{A}_{\#}(X) \subseteq \cdots \subseteq \mathcal{A}_{\#}^{1}(X) \subseteq \mathcal{A}_{\#}^{0}(X)=[X, X]
$$

For any connected CW-complex $X, \mathcal{A}_{\#}(X)=\mathcal{E}(X)$ according to the Whitehead theorem.

The group $\mathcal{E}(X \times Y)$ has been studied extensively by several authors, for instance, Booth and Heath [3], Heath [6], Lee [7], Pavešić [8-10] and Sieradski [11]. In particular, Paves̆ić [9] demonstrated that the group of self-homotopy equivalences $\mathcal{E}(X \times Y)$ can be represented as a product of two subgroups under

[^0]the assumption that the self-equivalences of $X \times Y$ can be diagonalized (or are reducible). In this study, we examine the sufficient conditions under which all elements of the submonoid $\mathcal{A}_{\#}^{k}(X \times Y)$ of $[X \times Y, X \times Y]$ can be factorized by two specific self-maps for a non-negative integer k. In Section 2, we introduce the concept of k-reducibility and find several conditions for the factorization of $\mathcal{A}_{\#}^{k}(X \times Y)$. In Section 3, we study the split short exact sequences of several monoids. In Section 4, we discuss an alternative idea of the k-reducibility in the category of CW-complexes and their relationships with self-closeness numbers [5] of product spaces.

Let i_{X} and i_{Y} denote the inclusions (as slices determined by the base-points) of X and Y in $X \times Y$, respectively, and p_{X} and p_{Y} be the projections of $X \times Y$ onto X and Y, respectively. Given a self-map $f: X \times Y \rightarrow X \times Y$ and $I, J \in\{X, Y\}$, write $f_{I}: X \times Y \rightarrow I$ for the composition $f_{I}:=p_{I} \circ f$ so that f is represented componentwise as $f=\left(f_{X}, f_{Y}\right)$ and $f_{I J}: J \rightarrow I$ for the composition $f_{I J}:=p_{I} \circ f \circ i_{J}$. The self-homotopy equivalence f of $X \times Y$ can be diagonalized (or is reducible) if $f_{X X}$ and $f_{Y Y}$ are self-homotopy equivalences of X and Y, respectively [8]. Now, we recall that the isomorphism $\Psi: \pi_{n}(X \times Y) \rightarrow \pi_{n}(X) \times \pi_{n}(Y)$ is given by $\Psi=\left(p_{X \#}, p_{Y \#}\right)$ with the inverse Φ, where $\Phi(\alpha, \beta)=i_{X \#}(\alpha)+i_{Y \#}(\beta)$ for $(\alpha, \beta) \in \pi_{n}(X) \times \pi_{n}(Y)$. Therefore, for given self-map $f: X \times Y \rightarrow X \times Y$, the induced homomorphism $\pi_{n}(f)$ can be identified with the 2×2 matrix

$$
\pi_{i}(f)=\left(\begin{array}{cc}
\pi_{i}\left(f_{X X}\right) & \pi_{i}\left(f_{X Y}\right) \\
\pi_{i}\left(f_{Y X}\right) & \pi_{i}\left(f_{Y Y}\right)
\end{array}\right)
$$

We refer to this 2×2-matrix as the matrix representation of the homomorphism $\pi_{i}(f)$ throughout this paper. Given two self-maps $f, g: X \times Y \rightarrow X \times Y$, the induced homomorphism $\pi_{i}(f \circ g)$ of the composition $f \circ g$ can be identified with the multiplication of their matrix representations.

Throughout this paper, all spaces are pointed, connected and have the homotopy type of a CW-complex with an abelian fundamental group. Moreover, all maps and homotopies preserve the base points and we do not distinguish between the notation of a map $f: X \rightarrow Y$ and that of its homotopy class in $[X, Y]$.
Acknowledgment. We are very grateful to the referee whose constructive remarks considerably improved the original manuscript.

2. Internal direct product of $\mathcal{A}_{X, \#}^{k}(X \times Y)$ and $\mathcal{A}_{Y, \#}^{k}(X \times Y)$

In this section, we discuss the factorization of $\mathcal{A}_{\#}^{k}(X \times Y)$ into two submonoids. We begin by introducing the following definition.
Definition 1. The self map $f: X \times Y \rightarrow X \times Y$ is said to be k - reducible if $f_{X X} \in \mathcal{A}_{\#}^{k}(X)$ and $f_{Y Y} \in \mathcal{A}_{\#}^{k}(Y)$.

According to the definition, if a self-map $f: X \times Y \rightarrow X \times Y$ is reducible, then f is k-reducible for each non-negative integer k. However, the converse
does not hold. On the other hand, it is easy to show that if a self-homotopy equivalence $f: X \times Y \rightarrow X \times Y$ is ∞-reducible, f is reducible on $\mathcal{E}(X \times Y)$ according to the Whitehead theorem.

Example 1. For $2 \leq m<n$, let $f: S^{m} \rightarrow S^{m}$ and $g: S^{n} \rightarrow S^{n}$ be maps with $\operatorname{deg}(f)=2$. Because S^{m} is $(m-1)$-connected, $\pi_{k}(f) \in \operatorname{Aut}\left(\pi_{k}\left(S^{m}\right)\right)$ and $\pi_{k}(g) \in \operatorname{Aut}\left(\pi_{k}\left(S^{n}\right)\right)$ for $0 \leq k \leq m-1$. However, $\pi_{m}(f)$ is not surjective because $\operatorname{deg}(f)=2$. Therefore, $f \times g$ is $(m-1)$-reducible but not reducible on $\mathcal{E}(X \times Y)$.

Given two abelian groups G and H, an homomorphism $\lambda: H \rightarrow G$ is said to be R-quasi-regular if for any homomorphism $\mu: G \rightarrow H$, the function $i d_{G}-\lambda \mu$ given by $\left(i d_{G}-\lambda \mu\right)(g)=g-\lambda((\mu(g))$ is an automorphism of G. Similarly, λ is said to be L-quasi-regular if $i d_{H}-\mu \lambda$ is an automorphism of H. Moreover, an homomorphism $\lambda: H \rightarrow G$ is said to be $R L$-quasi-regular if it is R-quasi-regular and L-quasi-regular. Clearly, if $\operatorname{Hom}(G, H)$ or $\operatorname{Hom}(H, G)$ is trivial, then each homomorphism in $\operatorname{Hom}(H, G)$ is RL-quasi-regular.

Lemma 1. If f is an element of $\mathcal{A}_{\#}^{k}(X \times Y)$ such that $\pi_{i}\left(f_{X Y}\right)$ is RL-quasiregular for $0 \leq i \leq k$, then f is k-reducible.
Proof. For each $f=\left(f_{X}, f_{Y}\right) \in \mathcal{A}_{\#}^{k}(X \times Y)$, the induced homomorphism $\pi_{i}(f)$ belongs to $\operatorname{Aut}\left(\pi_{i}(X \times Y)\right)$ for $0 \leq i \leq k$. For $0 \leq i \leq k$, the homomorphism

$$
\pi_{i}(f)=\left(\begin{array}{cc}
\pi_{i}\left(f_{X X}\right) & \pi_{i}\left(f_{X Y}\right) \\
\pi_{i}\left(f_{Y X}\right) & \pi_{i}\left(f_{Y Y}\right)
\end{array}\right)
$$

has an inverse homomorphism Φ_{i} of $\pi_{i}(f)$. Let

$$
\Phi_{i}=\left(\begin{array}{ll}
\varphi_{X X} & \varphi_{X Y} \\
\varphi_{Y X} & \varphi_{Y Y}
\end{array}\right)
$$

be the matrix representation. Then, $\pi_{i}(f) \circ \Phi_{i}=i d_{\pi_{i}(X \times Y)}$ implies that $\pi_{i}\left(f_{X X}\right) \varphi_{X X}+\pi_{i}\left(f_{X Y}\right) \varphi_{Y X}=i d_{\pi_{i}(X)}$. Since $\pi_{i}\left(f_{X Y}\right)$ is R-quasi-regular, $\pi_{i}\left(f_{X X}\right)$ is an isomorphism for $0 \leq i \leq k$. Similarly, $\Phi_{i} \circ \pi_{i}(f)=i d_{\pi_{i}(X \times Y)}$ implies that $\varphi_{Y X} \pi_{i}\left(f_{X Y}\right)+\varphi_{Y Y} \pi_{i}\left(f_{Y Y}\right)=i d_{\pi_{i}(Y)}$. Since $\pi_{i}\left(f_{X Y}\right)$ is L-quasiregular, $\pi_{i}\left(f_{Y Y}\right)$ is an isomorphism for $0 \leq i \leq k$.

We define the subset $\mathcal{A}_{X, \#}^{k}(X \times Y)$ as the set of all maps in $\mathcal{A}_{\#}^{k}(X \times Y)$ with the form $f=\left(p_{X}, f_{Y}\right): X \times Y \rightarrow X \times Y$. Similarly, we define the subset $\mathcal{A}_{Y, \#}^{k}(X \times Y)$ as the set of all maps in $\mathcal{A}_{\#}^{k}(X \times Y)$ with the form $f=\left(f_{X}, p_{Y}\right): X \times Y \rightarrow X \times Y$.

Lemma 2. (a) $\mathcal{A}_{X, \#}^{k}(X \times Y)$ and $\mathcal{A}_{Y, \#}^{k}(X \times Y)$ are submonoids of $\mathcal{A}_{\#}^{k}(X \times Y)$ for any nonnegative integer k.
(b) $\left(p_{X}, g\right) \in \mathcal{A}_{X, \#}^{k}(X \times Y)$ if and only if $g \circ i_{Y} \in \mathcal{A}_{\#}^{k}(Y)$.
(c) $\left(f, p_{Y}\right) \in \mathcal{A}_{Y, \#}^{k}(X \times Y)$ if and only if $f \circ i_{X} \in \mathcal{A}_{\#}^{k}(X)$.

Proof. (a) For the given elements $\left(p_{X}, f_{Y}\right)$ and $\left(p_{X}, g_{Y}\right)$ in $\mathcal{A}_{X, \#}^{k}(X \times Y)$, we have $\left(p_{X}, f_{Y}\right) \circ\left(p_{X}, g_{Y}\right)=\left(p_{X}, f_{Y} \circ\left(p_{X}, g_{Y}\right)\right)$. Moreover, the induced homomorphisms $\pi_{i}\left(p_{X}, f_{Y}\right)$ and $\pi_{i}\left(p_{X}, g_{Y}\right)$ are in $\operatorname{Aut}\left(\pi_{i}(X \times Y)\right)$ for $0 \leq i \leq k$. Therefore, $\pi_{i}\left(p_{X}, f_{Y}\right) \circ \pi_{i}\left(p_{X}, g_{Y}\right)=\pi_{i}\left(\left(p_{X}, f_{Y}\right) \circ\left(p_{X}, g_{Y}\right)\right) \in \operatorname{Aut}\left(\pi_{i}(X \times Y)\right)$ for $0 \leq i \leq k$. It follows that $\left(p_{X}, f_{Y}\right) \circ\left(p_{X}, g_{Y}\right) \in \mathcal{A}_{X, \#}^{k}(X \times Y)$. Clearly, $\left(p_{X}, f_{Y}\right) \circ\left(\left(p_{X}, g_{Y}\right) \circ\left(p_{X}, h_{Y}\right)\right)=\left(\left(p_{X}, f_{Y}\right) \circ\left(p_{X}, g_{Y}\right)\right) \circ\left(p_{X}, h_{Y}\right)$ and $\left(p_{X}, p_{Y}\right)$ is an identity of $\mathcal{A}_{X, \#}^{k}(X \times Y)$.
(b) Suppose $\left(p_{X}, g\right) \in \mathcal{A}_{X, \#}^{k}(X \times Y)$. Then, the matrix representation of isomorphism $\pi_{i}\left(p_{X}, g\right)$ for $0 \leq i \leq k$ is given by

$$
\left(\begin{array}{cc}
i d_{\pi_{i}(X)} & 0 \\
\pi_{i}\left(g \circ i_{X}\right) & \pi_{i}\left(g \circ i_{Y}\right)
\end{array}\right)
$$

Therefore, $\pi_{i}\left(g \circ i_{Y}\right)$ is an isomorphism on $\pi_{i}(Y)$ for $0 \leq i \leq k$.
Conversely, suppose that $g \circ i_{Y} \in \mathcal{A}_{\#}^{k}(Y)$. Then the inverse of $\pi_{i}\left(p_{X}, g\right)$ is represented by

$$
\left(\begin{array}{cc}
i d_{\pi_{i}(X)} & 0 \\
\pi_{i}\left(g \circ i_{Y}\right)^{-1} \circ\left(-\pi_{i}\left(g \circ i_{X}\right)\right) & \pi_{i}\left(g \circ i_{Y}\right)^{-1}
\end{array}\right),
$$

where $-\pi_{i}\left(g \circ i_{X}\right): \pi_{i}(X) \rightarrow \pi_{i}(Y)$ is the homomorphism given by $-\pi_{i}(g \circ$ $\left.i_{X}\right)(\alpha)=-\left(\pi_{i}\left(g \circ i_{X}\right)(\alpha)\right)$ in $\pi_{i}(Y)$ for each $\alpha \in \pi_{i}(X)$.
(c) This can be proved in a similar method to that of (b).

Corollary 1. If $f=\left(f_{X}, f_{Y}\right) \in \mathcal{A}_{\#}^{k}(X \times Y)$ is k-reducible, then $\left(p_{X}, f_{Y}\right) \in$ $\mathcal{A}_{X, \#}^{k}(X \times Y)$ and $\left(f_{X}, p_{Y}\right) \in \mathcal{A}_{Y, \#}^{k}(X \times Y)$.

Let U be a monoid and S and T be submonoids of U. Then U is called the internal direct product of S and T if
(1) U is uniquely factorizable with factors S and T;
(2) for all $s \in S$ and for all $t \in T$, st $=t s$.

On the other hand, the monoid $S \times T=\{(s, t) \mid s \in S, t \in T\}$ is called the external direct product of the two monoids S and T if the binary operation is given by $(s, t)\left(s^{\prime}, t^{\prime}\right)=\left(s s^{\prime}, t t^{\prime}\right)$ on $S \times T$ with the identity $\left(1_{S}, 1_{T}\right)$.

In [8], Pavešić showed that if X and Y are connected CW-complexes and all self-homotopy equivalences of $X \times Y$ are reducible, then $\operatorname{Aut}(X \times Y)=$ Aut $_{X}(X \times Y)$ Aut $_{Y}(X \times Y)$. Here, we discuss the factorization of $\mathcal{A}_{\#}^{k}(X \times Y)$ into $\mathcal{A}_{X, \#}^{k}(X \times Y)$ and $\mathcal{A}_{Y, \#}^{k}(X \times Y)$. However, we cannot apply the method in [8] to $\mathcal{A}_{\#}^{k}(X \times Y)$ directly because not all elements of $\mathcal{A}_{\#}^{k}(X \times Y)$ are always self-homotopy equivalences.

Theorem 1. Suppose that each $f=\left(f_{X}, f_{Y}\right) \in \mathcal{A}_{\#}^{k}(X \times Y)$ is k-reducible and $f_{Y} \simeq f_{Y Y} \circ p_{Y}$. Then

$$
\mathcal{A}_{\#}^{k}(X \times Y)=\mathcal{A}_{X, \#}^{k}(X \times Y) \mathcal{A}_{Y, \#}^{k}(X \times Y)
$$

Furthermore, if $f_{X} \simeq f_{X X} \circ p_{X}$, then $\left(p_{X}, f_{Y}\right) \circ\left(f_{X}, p_{Y}\right)=\left(f_{X}, p_{Y}\right) \circ\left(p_{X}, f_{Y}\right)$.

Proof. According to Corollary 1, $\left(p_{X}, f_{Y}\right) \in \mathcal{A}_{X, \#}^{k}(X \times Y)$ and $\left(f_{X}, p_{Y}\right) \in$ $\mathcal{A}_{Y, \#}^{k}(X \times Y)$, and therefore, they are contained in $\mathcal{A}_{\#}^{k}(X \times Y)$. Moreover, because $\mathcal{A}_{X, \#}^{k}(X \times Y) \cap \mathcal{A}_{Y, \#}^{k}(X \times Y)=\left\{\left(p_{X}, p_{Y}\right)\right\}$, it is sufficient to show that each element $f=\left(f_{X}, f_{Y}\right) \in \mathcal{A}_{\#}^{k}(X \times Y)$ can be factored as $f=g \circ h$, where $g \in \mathcal{A}_{X, \#}^{k}(X \times Y)$ and $h \in \mathcal{A}_{Y, \#}^{k}(X \times Y)$. Via a the direct computation, we have

$$
\begin{aligned}
\left(p_{X}, f_{Y}\right) \circ\left(f_{X}, p_{Y}\right) & =\left(f_{X}, f_{Y} \circ\left(f_{X}, p_{Y}\right)\right) \\
& \simeq\left(f_{X}, f_{Y Y} \circ p_{Y} \circ\left(f_{X}, p_{Y}\right)\right) \\
& =\left(f_{X}, f_{Y Y} \circ p_{Y}\right) \\
& \simeq\left(f_{X}, f_{Y}\right) .
\end{aligned}
$$

From Theorem 1, we arrive at the following corollary.
Corollary 2. If $f=\left(f_{X}, f_{Y}\right) \in \mathcal{A}_{\#}^{k}(X \times Y)$ is k-reducible and $f_{X} \simeq f_{X X} \circ p_{X}$ and $f_{Y} \simeq f_{Y Y} \circ p_{Y}$, then $\mathcal{A}_{\#}^{k}(X \times Y)$ is the internal direct product of $\mathcal{A}_{X, \#}^{k}(X \times$ Y) and $\mathcal{A}_{Y, \#}^{k}(X \times Y)$.

Consider the inclusion map $j: X \vee Y \rightarrow X \times Y$, where $X \vee Y$ is the wedge product of X and Y. Then we arrive at the following lemma.

Lemma 3. $j^{\sharp}:[X \times Y, X] \rightarrow[X \vee Y, X]$ is injective and $[Y, X]=0$ if and only if for each map $f: X \times Y \rightarrow X \times Y, f_{X} \simeq f_{X X} \circ p_{X}$.

Proof. Suppose that j^{\sharp} is injective. It suffices to show that $j^{\sharp}\left(f_{X}\right)=f_{X} \circ j=$ $f_{X X} \circ p_{X} \circ j=j^{\sharp}\left(f_{X X} \circ p_{X}\right)$. This is true because

$$
f_{X X} \circ p_{X} \circ j \circ i_{1}=f_{X X} \circ p_{X} \circ i_{X}=f_{X} \circ i_{X}=f_{X} \circ j \circ i_{1}
$$

and

$$
f_{X X} \circ p_{X} \circ j \circ i_{2}=f_{X X} \circ p_{X} \circ i_{Y} \simeq * \simeq f_{X Y}=f_{X} \circ i_{Y}=f_{X} \circ j \circ i_{2},
$$

where $i_{1}: X \rightarrow X \vee Y$ and $i_{2}: Y \rightarrow X \vee Y$ are injective maps defined by $i_{1}(x)=(x, *)$ and $i_{2}(y)=(*, y)$, respectively.

Conversely, suppose that for each map $f: X \times Y \rightarrow X \times Y, f_{X} \simeq f_{X X} \circ p_{X}$. For $u, v \in[X \times Y, X]$, define $g: X \times Y \rightarrow X \times Y$ and $h: X \times Y \rightarrow X \times Y$ by $g=\left(u, p_{Y}\right)$ and $h=\left(v, p_{Y}\right)$, respectively. Then $g_{X}=u$ and $h_{X}=v$. If $j^{\sharp}(u)=j^{\sharp}(v)$, then

$$
u \simeq u \circ i_{X} \circ p_{X}=u \circ j \circ i_{1} \circ p_{X} \simeq v \circ j \circ i_{1} \circ p_{X}=v \circ i_{X} \circ p_{X} \simeq v
$$

according to the hypothesis. Therefore j^{\sharp} is injective. Moreover, $[Y, X]=0$. In fact, if we define $f: X \times Y \rightarrow X \times Y$ by $f(x, y)=(w(y), y)$ for each map $w: Y \rightarrow X$, then $w=f_{X Y}=f_{X} \circ i_{Y} \simeq f_{X X} \circ p_{X} \circ i_{Y} \simeq *$.

Consider the following cofibre sequence:

$$
X \vee Y \xrightarrow{j} X \times Y \xrightarrow{q} X \wedge Y
$$

This gives rise to the following Barrat-Puppe sequence:

$$
\cdots \rightarrow[\Sigma(X \vee Y), X] \rightarrow[X \wedge Y, X] \xrightarrow{q^{\sharp}}[X \times Y, X] \xrightarrow{j^{\sharp}}[X \vee Y, X] .
$$

From this sequence and Lemma 3, we arrive at the following corollary.
Corollary 3. If $[X \wedge Y, X]=0$ and $[Y, X]=0$, then $f_{X} \simeq f_{X X} \circ p_{X}$ for each map $f: X \times Y \rightarrow X \times Y$.

According to Lemma 1, Theorem 1 and Corollary 3, we arrive at the following corollary.
Corollary 4. $\mathcal{A}_{\#}^{k}\left(S^{1} \times S^{n}\right)=\mathcal{A}_{S^{1}, \#}^{k}\left(S^{1} \times S^{n}\right) \mathcal{A}_{S^{n}, \#}^{k}\left(S^{1} \times S^{n}\right)$ for each pair of integers k and n such that $1 \leq k<n$.

3. Short exact sequences of monoids

In this section, we derive certain short exact sequences related to $\mathcal{A}_{\#}^{k}(X \times$ Y). Pavešić $[9$, Lemma 1.3, Proposition 1.4 and Theorem 1.5] introduced the monoid homomorphism from $\operatorname{Aut}_{Y}(X \times Y)$ to $\operatorname{Aut}(X)$ and several split short exact sequences. First, we introduce a similar monoid homomorphism.

Lemma 4. If $\Phi_{X}: \mathcal{A}_{Y, \#}^{k}(X \times Y) \rightarrow \mathcal{A}_{\#}^{k}(X)$ is a map defined by $\Phi_{X}\left(f_{X}, p_{Y}\right)=$ $f_{X X}$, then Φ_{X} is a monoid epimorphism.

Proof. Clearly, the function Φ_{X} is surjective according to Lemma 2(b).
Since

$$
\left(f_{X}, p_{Y}\right) \circ i_{X}=\left(f_{X} \circ i_{X}, p_{Y} \circ i_{X}\right)=\left(f_{X X}, *\right)=i_{X} \circ f_{X X}
$$

we have

$$
\begin{aligned}
\Phi_{X}\left(\left(f_{X}, p_{Y}\right) \circ\left(f_{X}^{\prime}, p_{Y}\right)\right) & =p_{X} \circ\left(f_{X}, p_{Y}\right) \circ\left(f_{X}^{\prime}, p_{Y}\right) \circ i_{X} \\
& =f_{X} \circ i_{X} \circ f_{X X}^{\prime}=\Phi_{X}\left(f_{X}, p_{Y}\right) \circ \Phi_{X}\left(f_{X}^{\prime}, p_{Y}\right)
\end{aligned}
$$

for $\left(f_{X}, p_{Y}\right),\left(f_{X}^{\prime}, p_{Y}\right) \in \mathcal{A}_{Y, \#}^{k}(X \times Y)$. Furthermore, because the induced map

$$
\pi_{i}\left(f_{X}, p_{Y}\right)=\left(\begin{array}{cc}
\pi_{i}\left(f_{X X}\right) & \pi_{i}\left(f_{X Y}\right) \\
0 & i d_{\pi_{i}(Y)}
\end{array}\right)
$$

is an isomorphism for $0 \leq i \leq k, \pi_{i}\left(f_{X X}\right)$ is an isomorphism for $0 \leq i \leq k$.
Let $\mathcal{A}_{Y, \#}^{X, k}(X \times Y)$ denote the submonoid of $\mathcal{A}_{Y, \#}^{k}(X \times Y)$, which consists of $\left(f_{X}, p_{Y}\right) \in \mathcal{A}_{Y, \#}^{k}(X \times Y)$ such that $\left(f_{X}, p_{Y}\right) \circ i_{X}=i_{X}$. Similarly, let $\mathcal{A}_{X, \#}^{Y, k}(X \times$ $Y)$ denote the submonoid of $\mathcal{A}_{X, \#}^{k}(X \times Y)$ which consists of $\left(p_{X}, f_{Y}\right) \in \mathcal{A}_{X, \#}^{k}(X$ $\times Y)$ such that $\left(p_{X}, f_{Y}\right) \circ i_{Y}=i_{Y}$. If $\left(g_{X}, p_{Y}\right) \in \operatorname{Ker} \Phi_{X}$, then $g_{X} \circ i_{X}=i d_{X}$ (that is, $\left.\left(g_{X}, p_{Y}\right) \circ i_{X}=i_{X}\right)$. Therefore, $\operatorname{Ker} \Phi_{X}=\mathcal{A}_{Y, \#}^{X, k}(X \times Y)$. Consequently, we have the following lemma.

Lemma 5. There exists a split short exact sequence of monoids

$$
1 \longrightarrow \mathcal{A}_{Y, \#}^{X, k}(X \times Y) \longrightarrow \mathcal{A}_{Y, \#}^{k}(X \times Y) \xrightarrow{\Phi_{X}} \mathcal{A}_{\#}^{k}(X) \longrightarrow 1
$$

where $\Phi_{X}\left(f_{X}, p_{Y}\right)=f_{X X}$.
Proof. Define $\sigma_{X}: \mathcal{A}_{\#}^{k}(X) \rightarrow \mathcal{A}_{Y, \#}^{k}(X \times Y)$ by $\sigma_{X}(f)=f \times i d_{Y}$. Then σ_{X} is the section of Φ_{X}.
Lemma 6. $\mathcal{A}_{Y, \#}^{X, k}(X \times Y)$ is trivial if and only if $f_{X} \simeq f_{X X} \circ p_{X}$ for each $\left(f_{X}, f_{Y}\right) \in \mathcal{A}_{\#}^{k}(X \times Y)$.

Proof. Since $\mathcal{A}_{Y, \#}^{X, k}(X \times Y)$ is trivial, Φ_{X} is an isomorphism. Moreover,

$$
\Phi_{X}\left(f_{X X} \circ p_{X}, p_{Y}\right)=f_{X X} \circ p_{X} \circ i_{X}=f_{X X}=\Phi_{X}\left(f_{X}, p_{Y}\right)
$$

Therefore, $f_{X} \simeq f_{X X} \circ p_{X}$.
Conversely, suppose that $f_{X} \simeq f_{X X} \circ p_{X}$. Then Φ_{X} is a monoid monomorphism because $\Phi_{X}\left(f_{X}, p_{Y}\right)=i d_{X}$ implies $f_{X}=p_{X}$. According to Lemma 5, $\mathcal{A}_{Y, \#}^{X, k}(X \times Y)$ is trivial.

Theorem 2. Assume that $\mathcal{A}_{Y, \#}^{X, k}(X \times Y)$ is trivial and that all elements of $\mathcal{A}_{\#}^{k}(X \times Y)$ are k-reducible. Then, there is a split short exact sequence of monoids

$$
1 \longrightarrow \mathcal{A}_{X, \#}^{Y, k}(X \times Y) \longrightarrow \mathcal{A}_{\#}^{k}(X \times Y) \longrightarrow \mathcal{A}_{\#}^{k}(X) \times \mathcal{A}_{\#}^{k}(Y) \longrightarrow 1
$$

where Φ is given by $\Phi(f)=\left(f_{X X}, f_{Y Y}\right)$ for each $f \in \mathcal{A}_{\#}^{k}(X \times Y)$.
Proof. Because each $f \in \mathcal{A}_{\#}^{k}(X \times Y)$ is k-reducible, the function Φ is welldefined. Moreover, because $f_{X X} \circ p_{X} \simeq f_{X}$ for $\left(f_{X}, f_{Y}\right) \in \mathcal{A}_{\#}^{k}(X \times Y)$ according to Lemma 6 and $p_{X} \circ i_{Y}=*$, we have $\Phi\left(\left(f_{X}, f_{Y}\right) \circ\left(f_{X}^{\prime}, f_{Y}^{\prime}\right)\right)=\Phi\left(\left(f_{X X} \circ\right.\right.$ $\left.\left.p_{X}, f_{Y}\right) \circ\left(f_{X X}^{\prime} \circ p_{X}, f_{Y}^{\prime}\right)\right)=\Phi\left(\left(f_{X X} \circ p_{X} \circ\left(f_{X X}^{\prime} \circ p_{X}, f_{Y}^{\prime}\right), f_{Y} \circ\left(f_{X X}^{\prime} \circ p_{X}, f_{Y}^{\prime}\right)\right)=\right.$ $\Phi\left(\left(f_{X X} \circ f_{X X}^{\prime} \circ p_{X}, f_{Y} \circ\left(f_{X X}^{\prime} \circ p_{X}, f_{Y}^{\prime}\right)\right)=\left(\left(f_{X X} \circ f_{X X}^{\prime} \circ p_{X}\right) \circ i_{X}, f_{Y} \circ\right.\right.$ $\left.\left(f_{X X}^{\prime} \circ p_{X}, f_{Y}^{\prime}\right) \circ i_{Y}\right)=\left(f_{X X} \circ f_{X X}^{\prime}, f_{Y Y} \circ f_{Y Y}^{\prime}\right)=\Phi\left(f_{X}, f_{Y}\right) \circ \Phi\left(f_{X}^{\prime}, f_{Y}^{\prime}\right)$ for $\left(f_{X}, f_{Y}\right),\left(f_{X}^{\prime}, f_{Y}^{\prime}\right) \in \mathcal{A}_{\#}^{k}(X \times Y)$. Therefore, Φ is a homomorphism.

Clearly, $\operatorname{Ker} \Phi_{Y}=\mathcal{A}_{X, \#}^{Y, k}(X \times Y)$. Furthermore, if we define $\sigma: \mathcal{A}_{\#}^{k}(X) \times$ $\mathcal{A}_{\#}^{k}(Y) \rightarrow \mathcal{A}_{\#}^{k}(X \times Y)$ by $\sigma\left(g, g^{\prime}\right)=g \times g^{\prime}, \sigma$ is clearly a homomorphism and the section of Φ.

From Theorem 2 and Lemma 5, we arrive at the following corollary.
Corollary 5. If both $\mathcal{A}_{Y, \#}^{X, k}(X \times Y)$ and $\mathcal{A}_{X, \#}^{Y, k}(X \times Y)$ are trivial and all elements of $\mathcal{A}_{\#}^{k}(X \times Y)$ are k-reducible, then $\mathcal{A}_{\#}^{k}(X \times Y)$ is isomorphic to the external direct product $\mathcal{A}_{X, \#}^{k}(X \times Y) \times \mathcal{A}_{Y, \#}^{k}(X \times Y)$.

4. Self-closeness number of product spaces

In this section, we discuss the relationship between the k-reducibility and the self-closeness number introduced by Choi and Lee [5].

Lemma 7. Let $\left(f_{X}, f_{Y}\right) \in \mathcal{A}_{\#}^{k}(X \times Y)$. If $f_{X} \simeq f_{X X} \circ p_{X}\left(f_{Y} \simeq f_{Y Y} \circ p_{Y}\right)$, then $f_{X Y}\left(f_{Y X}\right)$ is null homotopic.

Proof. Clearly, $f_{X Y} \simeq f_{X} \circ i_{Y} \simeq f_{X X} \circ p_{X} \circ i_{Y}=*$.
Theorem 3. Let $f=\left(f_{X}, f_{Y}\right) \in \mathcal{A}_{\#}^{k}(X \times Y)$. If $f_{X Y} \simeq *$ and $f_{Y X} \simeq *$, then f is k-reducible.

Proof. According to the hypothesis, the induced homomorphisms $\pi_{i}\left(f_{X Y}\right)$ and $\pi_{i}\left(f_{Y X}\right)$ are trivial. If

$$
\Phi_{i}=\left(\begin{array}{cc}
\varphi_{X X} & \varphi_{X Y} \\
\varphi_{Y X} & \varphi_{Y Y}
\end{array}\right)
$$

is the inverse homomorphism of $\pi_{i}(f)$ for $0 \leq i \leq k$, then the homomorphisms $\varphi_{X X}$ and $\varphi_{Y Y}$ are inverse homomorphisms of $\pi_{i}\left(f_{X X}\right)$ and $\pi_{i}\left(f_{Y Y}\right)$, respectively. Therefore, f is k-reducible.

From Theorem 3, we arrive at the following corollary.
Corollary 6. If for all $f=\left(f_{X}, f_{Y}\right) \in \mathcal{A}_{\#}^{k}(X \times Y), f_{X} \simeq f_{X X} \circ p_{X}$ and $f_{Y} \simeq f_{Y Y} \circ p_{Y}$, then $\mathcal{A}_{\#}^{k}(X \times Y) \cong \mathcal{A}_{Y, \#}^{k}(X \times Y) \times \mathcal{A}_{X, \#}^{k}(X \times Y) \cong \mathcal{A}_{\#}^{k}(X) \times$ $\mathcal{A}_{\#}^{k}(Y)$; moreover, $\mathcal{A}_{\#}^{k}(X \times Y)$ is the internal direct product of $\mathcal{A}_{X, \#}^{k}(X \times Y)$ and $\mathcal{A}_{Y, \#}^{k}(X \times Y)$.

Proof. From Corollary 5, $\mathcal{A}_{\#}^{k}(X \times Y) \cong \mathcal{A}_{Y, \#}^{k}(X \times Y) \times \mathcal{A}_{X, \#}^{k}(X \times Y)$. Moreover, $\mathcal{A}_{Y, \#}^{X, k}(X \times Y)$ and $\mathcal{A}_{X, \#}^{Y, k}(X \times Y)$ are trivial according to Lemma 6. Therefore, $\mathcal{A}_{\#}^{k}(X \times Y) \cong \mathcal{A}_{\#}^{k}(X) \times \mathcal{A}_{\#}^{k}(Y)$ in agreement with Lemma 5.

For given spaces X and Y, let $f: X \times Y \rightarrow X \times Y$ be a map such that $f_{X} \simeq f_{X X} \circ p_{X}$. Because the projection map $p_{X}: X \times Y \rightarrow X$ is a fibration, we obtain the following commutative diagram of fibrations:

In fact,

$$
f \circ i_{Y}=\left(f_{X Y}, f_{Y Y}\right) \simeq\left(*, f_{Y Y}\right)=i_{Y} \circ f_{Y Y}
$$

Conversely, let $g: X \rightarrow X$ and $h: Y \rightarrow Y$ be maps such that $g \circ p_{X} \simeq p_{X} \circ f$ and $i_{Y} \circ h \simeq f \circ i_{Y}$. Because $p_{X} \circ i_{X}=i d_{X}, g \simeq p_{X} \circ f \circ i_{X}=f_{X X}$. Similarly, $h \simeq f_{Y Y}$. Therefore, $f_{X X}: X \rightarrow X$ and $f_{Y Y}: Y \rightarrow Y$ are representatives such that the above diagram is homotopy commutative for any $f: X \times Y \rightarrow X \times Y$.

Consider the commutative ladder of homotopy groups induced from the above diagram:

Using this commutative ladder, we will prove Theorem 4.
First, we recall the closeness number introduced by Choi and Lee [5]. The self-closeness number of X denoted by $N \mathcal{E}(X)$ is the least nonnegative integer k such that $\mathcal{E}(X)=\mathcal{A}_{\#}^{k}(X)$. That is,

$$
N \mathcal{E}(X)=\min \left\{k \mid \mathcal{E}(X)=\mathcal{A}_{\#}^{k}(X) \text { for } k \geq 0\right\}
$$

Lemma 8 ([5, Theorem 2]). If X is a $C W$-complex with dimension n, then

$$
N \mathcal{E}(X) \leq n
$$

Lemma 9 ([5, Theorem 3]). Let X and Y be $C W$-complexes. Then, we have

$$
N \mathcal{E}(X \times Y) \geq \max \{N \mathcal{E}(X), N \mathcal{E}(Y)\}
$$

Theorem 4. Let X and Y be $C W$-complexes. If each map $f: X \times Y \rightarrow X \times Y$ satisfies the conditions $f_{X} \simeq f_{X X} \circ p_{X}$ and $f_{Y X} \simeq *$, then

$$
N \mathcal{E}(X \times Y)=\max \{N \mathcal{E}(X), N \mathcal{E}(Y)\}
$$

Proof. Let $N \mathcal{E}(X)=m$ and $N \mathcal{E}(Y)=n$. We assume $m \geq n$. For each $l \geq m$, let $f \in \mathcal{A}_{\#}^{l}(X \times Y)$. Then, we have the commutative ladder mentioned above. According to Lemma 7 and Theorem 3, f is l-reducible. Therefore, $f_{X X} \in \mathcal{A}_{\#}^{l}(X) \subset \mathcal{A}_{\#}^{m}(X)$ and $f_{Y Y} \in \mathcal{A}_{\#}^{l}(Y) \subset \mathcal{A}_{\#}^{n}(Y)$. According to the definition of the self-closeness number, $\mathcal{A}_{\#}^{m}(X)=\mathcal{E}(X)$ and $\mathcal{A}_{\#}^{n}(Y)=\mathcal{E}(Y)$. Therefore, $\pi_{k}\left(f_{X X}\right)$ and $\pi_{k}\left(f_{Y Y}\right)$ are automorphisms for all $k \geq 0$. By the Five Lemma, $\pi_{k}(f)$ is also an automorphism for all $k \geq 0$ in the homotopy commutative ladder. Therefore, f is a homotopy equivalence according to the Whitehead theorem. This implies that $f \in \mathcal{A}_{\#}^{l}(X \times Y)=\mathcal{E}(X \times Y)$ for each $l \geq m$. Therefore, $N \mathcal{E}(X \times Y)=m=\max \{N \mathcal{E}(X), N \mathcal{E}(Y)\}$ in accordance with Lemma 9 and the minimality of the self-closeness number.

From Lemma 3, Corollary 3, Theorem 4, and [5, Corollary 2], we obtain the following corollaries.

Corollary 7. Let X and Y be $C W$-complexes with $[X \wedge Y, X]=0$. If $[X, Y]=0$ and $[Y, X]=0$, then $N \mathcal{E}(X \times Y)=\max \{N \mathcal{E}(X), N \mathcal{E}(Y)\}$.

From Corollary 7 and [5, Corollary 2], we obtain the following corollary.

Corollary 8. Let $m \neq n$. Then, $N \mathcal{E}\left(S^{m} \times S^{n}\right)=\max \{m, n\}$ provided that $\pi_{m+n}\left(S^{\min \{m, n\}}\right)=0$ and $\pi_{\max \{m, n\}}\left(S^{\min \{m, n\}}\right)=0$.

Therefore, if $1<n$, then $N \mathcal{E}\left(S^{1} \times S^{n}\right)=n$. Furthermore, $N \mathcal{E}\left(S^{12} \times S^{7}\right)=12$ because $\pi_{19}\left(S^{7}\right)=0$ and $\pi_{12}\left(S^{7}\right)=0$. Similarly, $N \mathcal{E}\left(S^{8} \times S^{12}\right)=12$.

Suppose that X and Y are group-like spaces. Consider the cofibration

$$
X \vee Y \xrightarrow{j} X \times Y \xrightarrow{q} X \wedge Y
$$

and the short exact sequence of additive groups of homotopy classes obtained from the cofibration:

All elements of $[X \vee Y, X \times Y$] can be identified with the 2×2 matrix

$$
\left(f_{I J}\right)=\left(\begin{array}{cc}
f_{X X} & f_{X Y} \\
f_{Y X} & f_{Y Y}
\end{array}\right)
$$

with entries $f_{I J}$ in the homotopy sets $[I, J]$ for $I, J=X, Y$. In [11, Corollary 7], it was shown that if $[X \wedge Y, X \times Y]=0$, the group of self-homotopy equivalences of $X \times Y$ is $G L\left(2, \Lambda_{I J}\right)$ contained in $[X \vee Y, X \times Y$], the group of invertible matrices with entries $f_{I J} \in \Lambda_{I J}=[I, J]$ for $I, J=X, Y$.

Theorem 5. Let X and Y be group-like spaces such that $[X \wedge Y, X \times Y]=0$ and $[Y, X]=0$. If f is a self-map of $X \times Y$ such that $f_{X X} \in \mathcal{E}(X), f_{Y Y} \in \mathcal{E}(Y)$ and $\left(f_{X X}\right)^{-1}$ are H-maps, then f is a self-homotopy equivalence.

Proof. Let f be a self-map of $X \times Y$ such that $f_{X X} \in \mathcal{E}(X), f_{Y Y} \in \mathcal{E}(Y)$ and $\left(f_{X X}\right)^{-1}$ are H-maps. Under the condition $[Y, X]=0$, each element $\left(f_{I J}\right)$ in $[X \vee Y, X \times Y$] has a left inverse and a right inverse

$$
\left(\begin{array}{cc}
\left(f_{X X}\right)^{-1} & -\left(f_{X X}\right)^{-1} \circ f_{X Y} \circ\left(f_{Y Y}\right)^{-1} \\
0 & \left(f_{Y Y}\right)^{-1}
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
\left(f_{X X}\right)^{-1} & \left(f_{X X}\right)^{-1} \circ\left(-f_{X Y}\right) \circ\left(f_{Y Y}\right)^{-1} \\
0 & \left(f_{Y Y}\right)^{-1}
\end{array}\right)
$$

respectively. Therefore, if $-\left(f_{X X}\right)^{-1} \circ f_{X Y} \circ\left(f_{Y Y}\right)^{-1}=\left(f_{X X}\right)^{-1} \circ\left(-f_{X Y}\right) \circ$ $\left(f_{Y Y}\right)^{-1},[X \vee Y, X \times Y]=G L\left(2, \Lambda_{I J}\right)$. Let m and a be the multiplication and the homotopy inverse of X, respectively. Then,

$$
\begin{aligned}
* & =\left(f_{X X}\right)^{-1} \circ * \circ f_{X Y} \\
& =\left(f_{X X}\right)^{-1} \circ m(i d \times a) \circ\left(f_{X Y} \times f_{X Y}\right) \Delta \\
& =\left(f_{X X}\right)^{-1} \circ m\left(f_{X Y} \times\left(a \circ f_{X Y}\right)\right) \Delta \\
& =m\left(\left(f_{X X}\right)^{-1} \times\left(f_{X X}\right)^{-1}\right)\left(f_{X Y} \times\left(\left(a \circ f_{X Y}\right)\right) \Delta\right. \\
& =m\left(\left(\left(f_{X X}\right)^{-1} \circ f_{X Y}\right) \times\left(\left(f_{X X}\right)^{-1} \circ\left(\left(a \circ f_{X Y}\right)\right)\right) \Delta,\right.
\end{aligned}
$$

where $\Delta: Y \rightarrow Y \times Y$ is the diagonal map. Therefore, we have

$$
\begin{aligned}
& \left(\left(f_{X X}\right)^{-1} \circ f_{X Y}+\left(f_{X X}\right)^{-1} \circ\left(-f_{X Y}\right)\right)\left(f_{Y Y}\right)^{-1} \\
= & \left(\left(f_{X X}\right)^{-1} \circ f_{X Y} \circ\left(f_{Y Y}\right)^{-1}+\left(f_{X X}\right)^{-1} \circ\left(-f_{X Y}\right) \circ\left(f_{Y Y}\right)^{-1}=0,\right.
\end{aligned}
$$

and further, $-\left(f_{X X}\right)^{-1} \circ f_{X Y} \circ\left(f_{Y Y}\right)^{-1}=\left(f_{X X}\right)^{-1} \circ\left(-f_{X Y}\right) \circ\left(f_{Y Y}\right)^{-1}$. Consequently, there is a unique homotopy inverse for each $\left(f_{I J}\right)$ in $[X \vee Y, X \times Y]$. In accordance with [11, Corollary 7], f is a self-homotopy equivalence.

From Theorem 5, we obtain the following corollary.
Corollary 9. For each pair of integers m and n such that $1 \leq m<n$ and the abelian groups G and H,

$$
N \mathcal{E}(K(G, m) \times K(H, n))=n
$$

where $K(G, m)$ and $K(H, n)$ are Eilenberg-MacLane spaces.
Proof. Let $X=K(G, m)$ and $Y=K(H, n)$. Then, X and Y are group-like spaces and $[X \wedge Y, X \times Y]=0$. For every map $f_{X X} \in[X, X], f_{X X}$ is an H-map because $X=K(G, m)=\Omega K(G, m+1)$. Since $m<n,[Y, X]=0$. According to Lemma 1 , every element of $\mathcal{A}_{\#}^{k}(X \times Y)$ is k-reducible. Moreover, $\mathcal{A}_{\#}^{n}(X)=$ $\mathcal{E}(X), \mathcal{A}_{\#}^{n}(Y)=\mathcal{E}(Y)$, and $N \mathcal{E}(X \times Y) \geq \max \{N \mathcal{E}(X), N \mathcal{E}(Y)\}=n$ because $N \mathcal{E}(K(G, m))=m<n=N \mathcal{E}(K(H, n))$. Therefore, $\mathcal{A}_{\#}^{n}(X \times Y)=\mathcal{E}(X \times Y)$ in accordance with Theorem 5.

References

[1] M. Arkowitz, The group of self-homotopy equivalences - a survey, Lecture Notes in Math. Vol. 1425, 170-203, Springer, New York, 1990.
[2] _ Introduction to Homotopy Theory, Springer, New York Dordrecht Heidelberg London, 2010.
[3] P. I. Booth and P. R. Heath, On the groups $\mathcal{E}(X \times Y)$ and $\mathcal{E}_{B}^{B}\left(X \times_{B} Y\right)$, In Group of Self-Equivalences and Related Topics, ed. R. A. Piccinini, 17-31, Springer LNM 1425, 1990.
[4] H. Choi and K. Lee, Certain self homotopy equivalences on wedge product on Moore spaces, Pacific J. Math. 272 (2014), no. 1, 35-57.
[5] \qquad , Certain numbers on the groups of self-homotopy equivalences, Topology Appl. 181 (2015), 104-111.
[6] P. R. Heath, On the group $\mathcal{E}(X \times Y)$ of self homotopy equivalences of a product, Quaestiones Math. 19 (1996), no. 3-4, 433-451.
[7] K. Lee, The groups of self pair homotopy equivalences, J. Korea Math. Soc. 43 (2006), no. 3, 491-506.
[8] P. Pavešić, Self-homotopy equivalences of product spaces, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 1, 181-197.
[9] , Self fibre homotopy equivalences of fibred products, Topology Appl. 102 (2000), no. 2, 169-180.
[10] , Reducibility of self-homotopy equivalences, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 2, 389-413.
[11] A. J. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math. 34 (1970), 789-802.

Sang Woo Jun
Department of Mathematics
Korea University
Seoul 136-701, Korea
E-mail address: junsangwoo81@gmail.com
Kee Young Lee
Department of Mathematics
Korea University
Sejong City 339-700, Korea
E-mail address: keyolee@korea.ac.kr

[^0]: Received June 21, 2016; Revised October 21, 2016.
 2010 Mathematics Subject Classification. Primary 55Q05; Secondary 55P10.
 Key words and phrases. reducible, k-reducible, self-homotopy equivalence, self-closeness number.

 Supported by a Korea University Grant.

