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FACTORIZATION OF CERTAIN SELF-MAPS

OF PRODUCT SPACES

Sangwoo Jun and Kee Young Lee

Abstract. In this paper, we show that, under some conditions, self-maps
of product spaces can be represented by the composition of two specific
self-maps if their induced homomorphism on the i-th homotopy group
is an automorphism for all i in some section of positive integers. As an
application, we obtain closeness numbers of several product spaces.

1. Introduction

For a connected pointed topological space X , let E(X) denote the set of
homotopy classes of pointed self-maps of X that are homotopy equivalences.
Then, E(X) is a group with a group operation given by a composition of homo-
topy classes. Let [X,X ] be the set of all based homotopy classes of self-maps
of X . When [X,X ] is given by a composition of homotopy classes, the set is a
monoid. Choi and Lee [5] studied certain submonoid of [X,X ] containing E(X)
as a set. If Ak

#(X) denotes the set of homotopy classes of self-maps of X that

induce an automorphism of πi(X) for 0 ≤ i ≤ k, then Ak
#(X) is a submonoid

of [X,X ] with an operation given by a composition of homotopy classes for
any nonnegative integer k. If k = ∞, we simply denote A∞

# (X) as A#(X).

By definition, An
#(X) ⊆ Am

#(X) if n ≥ m. Therefore, we have the following
descending series:

E(X) ⊆ A#(X) ⊆ · · · ⊆ A1
#(X) ⊆ A0

#(X) = [X,X ].

For any connected CW-complex X , A#(X) = E(X) according to the White-
head theorem.

The group E(X × Y ) has been studied extensively by several authors, for
instance, Booth and Heath [3], Heath [6], Lee [7], Paves̆ić [8–10] and Sieradski
[11]. In particular, Paves̆ić [9] demonstrated that the group of self-homotopy
equivalences E(X×Y ) can be represented as a product of two subgroups under
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the assumption that the self-equivalences of X ×Y can be diagonalized (or are
reducible). In this study, we examine the sufficient conditions under which all
elements of the submonoid Ak

#(X × Y ) of [X × Y,X × Y ] can be factorized by
two specific self-maps for a non-negative integer k. In Section 2, we introduce
the concept of k-reducibility and find several conditions for the factorization of
Ak

#(X × Y ). In Section 3, we study the split short exact sequences of several
monoids. In Section 4, we discuss an alternative idea of the k-reducibility in the
category of CW-complexes and their relationships with self-closeness numbers
[5] of product spaces.

Let iX and iY denote the inclusions (as slices determined by the base-points)
of X and Y in X × Y , respectively, and pX and pY be the projections of
X × Y onto X and Y , respectively. Given a self-map f : X × Y → X × Y

and I, J ∈ {X,Y }, write fI : X × Y → I for the composition fI := pI ◦ f

so that f is represented componentwise as f = (fX , fY ) and fIJ : J → I

for the composition fIJ := pI ◦ f ◦ iJ . The self-homotopy equivalence f of
X × Y can be diagonalized (or is reducible) if fXX and fY Y are self-homotopy
equivalences of X and Y , respectively [8]. Now, we recall that the isomorphism
Ψ : πn(X × Y ) → πn(X)× πn(Y ) is given by Ψ = (pX#, pY#) with the inverse
Φ, where Φ(α, β) = iX#(α) + iY#(β) for (α, β) ∈ πn(X) × πn(Y ). Therefore,
for given self-map f : X × Y → X × Y , the induced homomorphism πn(f) can
be identified with the 2× 2 matrix

πi(f) =

(

πi(fXX) πi(fXY )
πi(fYX) πi(fY Y )

)

.

We refer to this 2× 2-matrix as the matrix representation of the homomor-
phism πi(f) throughout this paper. Given two self-maps f, g : X×Y → X×Y ,
the induced homomorphism πi(f ◦ g) of the composition f ◦ g can be identified
with the multiplication of their matrix representations.

Throughout this paper, all spaces are pointed, connected and have the ho-
motopy type of a CW-complex with an abelian fundamental group. Moreover,
all maps and homotopies preserve the base points and we do not distinguish
between the notation of a map f : X → Y and that of its homotopy class in
[X,Y ].

Acknowledgment. We are very grateful to the referee whose constructive
remarks considerably improved the original manuscript.

2. Internal direct product of Ak
X,#

(X × Y ) and Ak
Y,#

(X × Y )

In this section, we discuss the factorization of Ak
#(X × Y ) into two sub-

monoids. We begin by introducing the following definition.

Definition 1. The self map f : X × Y → X × Y is said to be k- reducible if
fXX ∈ Ak

#(X) and fY Y ∈ Ak
#(Y ).

According to the definition, if a self-map f : X × Y → X × Y is reducible,
then f is k-reducible for each non-negative integer k. However, the converse
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does not hold. On the other hand, it is easy to show that if a self-homotopy
equivalence f : X × Y → X × Y is ∞-reducible, f is reducible on E(X × Y )
according to the Whitehead theorem.

Example 1. For 2 ≤ m < n, let f : Sm → Sm and g : Sn → Sn be maps
with deg(f)=2. Because Sm is (m − 1)-connected, πk(f) ∈ Aut(πk(S

m)) and
πk(g) ∈ Aut(πk(S

n)) for 0 ≤ k ≤ m − 1. However, πm(f) is not surjective
because deg(f)=2. Therefore, f × g is (m− 1)-reducible but not reducible on
E(X × Y ).

Given two abelian groups G and H , an homomorphism λ : H → G is said to
be R-quasi-regular if for any homomorphism µ : G → H , the function idG−λµ

given by (idG−λµ)(g) = g−λ((µ(g)) is an automorphism of G. Similarly, λ is
said to be L-quasi-regular if idH − µλ is an automorphism of H . Moreover, an
homomorphism λ : H → G is said to be RL-quasi-regular if it is R-quasi-regular
and L-quasi-regular. Clearly, if Hom(G,H) or Hom(H,G) is trivial, then each
homomorphism in Hom(H,G) is RL-quasi-regular.

Lemma 1. If f is an element of Ak
#(X × Y ) such that πi(fXY ) is RL-quasi-

regular for 0 ≤ i ≤ k, then f is k-reducible.

Proof. For each f = (fX , fY ) ∈ Ak
#(X×Y ), the induced homomorphism πi(f)

belongs to Aut(πi(X × Y )) for 0 ≤ i ≤ k. For 0 ≤ i ≤ k, the homomorphism

πi(f) =

(

πi(fXX) πi(fXY )
πi(fYX) πi(fY Y )

)

has an inverse homomorphism Φi of πi(f). Let

Φi =

(

ϕXX ϕXY

ϕY X ϕY Y

)

be the matrix representation. Then, πi(f) ◦ Φi = idπi(X×Y ) implies that
πi(fXX)ϕXX + πi(fXY )ϕY X = idπi(X). Since πi(fXY ) is R-quasi-regular,
πi(fXX) is an isomorphism for 0 ≤ i ≤ k. Similarly, Φi ◦ πi(f) = idπi(X×Y )

implies that ϕYXπi(fXY ) + ϕY Y πi(fY Y ) = idπi(Y ). Since πi(fXY ) is L-quasi-
regular, πi(fY Y ) is an isomorphism for 0 ≤ i ≤ k. �

We define the subset Ak
X,#(X × Y ) as the set of all maps in Ak

#(X × Y )

with the form f = (pX , fY ) : X × Y → X × Y . Similarly, we define the
subset Ak

Y,#(X × Y ) as the set of all maps in Ak
#(X × Y ) with the form

f = (fX , pY ) : X × Y → X × Y .

Lemma 2. (a) Ak
X,#(X×Y ) and Ak

Y,#(X×Y ) are submonoids of Ak
#(X×Y )

for any nonnegative integer k.

(b) (pX , g) ∈ Ak
X,#(X × Y ) if and only if g ◦ iY ∈ Ak

#(Y ).

(c) (f, pY ) ∈ Ak
Y,#(X × Y ) if and only if f ◦ iX ∈ Ak

#(X).
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Proof. (a) For the given elements (pX , fY ) and (pX , gY ) in Ak
X,#(X × Y ),

we have (pX , fY ) ◦ (pX , gY ) = (pX , fY ◦ (pX , gY )). Moreover, the induced
homomorphisms πi(pX , fY ) and πi(pX , gY ) are in Aut(πi(X×Y )) for 0 ≤ i ≤ k.
Therefore, πi(pX , fY ) ◦ πi(pX , gY ) = πi((pX , fY ) ◦ (pX , gY )) ∈ Aut(πi(X ×Y ))
for 0 ≤ i ≤ k. It follows that (pX , fY ) ◦ (pX , gY ) ∈ Ak

X,#(X × Y ). Clearly,

(pX , fY ) ◦ ((pX , gY ) ◦ (pX , hY )) = ((pX , fY ) ◦ (pX , gY )) ◦ (pX , hY ) and (pX , pY )
is an identity of Ak

X,#(X × Y ).

(b) Suppose (pX , g) ∈ Ak
X,#(X × Y ). Then, the matrix representation of

isomorphism πi(pX , g) for 0 ≤ i ≤ k is given by
(

idπi(X) 0
πi(g ◦ iX) πi(g ◦ iY )

)

.

Therefore, πi(g ◦ iY ) is an isomorphism on πi(Y ) for 0 ≤ i ≤ k.
Conversely, suppose that g ◦ iY ∈ Ak

#(Y ). Then the inverse of πi(pX , g) is
represented by

(

idπi(X) 0
πi(g ◦ iY )

−1 ◦ (−πi(g ◦ iX)) πi(g ◦ iY )
−1

)

,

where −πi(g ◦ iX) : πi(X) → πi(Y ) is the homomorphism given by −πi(g ◦
iX)(α) = −(πi(g ◦ iX)(α)) in πi(Y ) for each α ∈ πi(X).

(c) This can be proved in a similar method to that of (b). �

Corollary 1. If f = (fX , fY ) ∈ Ak
#(X × Y ) is k-reducible, then (pX , fY ) ∈

Ak
X,#(X × Y ) and (fX , pY ) ∈ Ak

Y,#(X × Y ).

Let U be a monoid and S and T be submonoids of U . Then U is called the

internal direct product of S and T if
(1) U is uniquely factorizable with factors S and T ;
(2) for all s ∈ S and for all t ∈ T , st = ts.

On the other hand, the monoid S × T = {(s, t) | s ∈ S, t ∈ T } is called the

external direct product of the two monoids S and T if the binary operation is
given by (s, t)(s′, t′) = (ss′, tt′) on S × T with the identity (1S, 1T ).

In [8], Paves̆ić showed that if X and Y are connected CW-complexes and
all self-homotopy equivalences of X × Y are reducible, then Aut(X × Y ) =
AutX(X × Y )AutY (X × Y ). Here, we discuss the factorization of Ak

#(X × Y )

into Ak
X,#(X × Y ) and Ak

Y,#(X × Y ). However, we cannot apply the method

in [8] to Ak
#(X×Y ) directly because not all elements of Ak

#(X×Y ) are always
self-homotopy equivalences.

Theorem 1. Suppose that each f = (fX , fY ) ∈ Ak
#(X ×Y ) is k-reducible and

fY ≃ fY Y ◦ pY . Then

Ak
#(X × Y ) = Ak

X,#(X × Y )Ak
Y,#(X × Y ).

Furthermore, if fX ≃ fXX ◦pX , then (pX , fY )◦ (fX , pY ) = (fX , pY )◦ (pX , fY ).
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Proof. According to Corollary 1, (pX , fY ) ∈ Ak
X,#(X × Y ) and (fX , pY ) ∈

Ak
Y,#(X × Y ), and therefore, they are contained in Ak

#(X × Y ). Moreover,

because Ak
X,#(X × Y ) ∩ Ak

Y,#(X × Y ) = {(pX , pY )}, it is sufficient to show

that each element f = (fX , fY ) ∈ Ak
#(X × Y ) can be factored as f = g ◦ h,

where g ∈ Ak
X,#(X ×Y ) and h ∈ Ak

Y,#(X × Y ). Via a the direct computation,
we have

(pX , fY ) ◦ (fX , pY ) = (fX , fY ◦ (fX , pY ))

≃ (fX , fY Y ◦ pY ◦ (fX , pY ))

= (fX , fY Y ◦ pY )

≃ (fX , fY ). �

From Theorem 1, we arrive at the following corollary.

Corollary 2. If f = (fX , fY ) ∈ Ak
#(X×Y ) is k-reducible and fX ≃ fXX ◦pX

and fY ≃ fY Y ◦pY , then Ak
#(X×Y ) is the internal direct product of Ak

X,#(X×

Y ) and Ak
Y,#(X × Y ).

Consider the inclusion map j : X ∨ Y → X × Y , where X ∨ Y is the wedge
product of X and Y . Then we arrive at the following lemma.

Lemma 3. j♯ : [X×Y,X ] → [X ∨Y,X ] is injective and [Y,X ] = 0 if and only

if for each map f : X × Y → X × Y , fX ≃ fXX ◦ pX .

Proof. Suppose that j♯ is injective. It suffices to show that j♯(fX) = fX ◦ j =
fXX ◦ pX ◦ j = j♯(fXX ◦ pX). This is true because

fXX ◦ pX ◦ j ◦ i1 = fXX ◦ pX ◦ iX = fX ◦ iX = fX ◦ j ◦ i1

and

fXX ◦ pX ◦ j ◦ i2 = fXX ◦ pX ◦ iY ≃ ∗ ≃ fXY = fX ◦ iY = fX ◦ j ◦ i2,

where i1 : X → X ∨ Y and i2 : Y → X ∨ Y are injective maps defined by
i1(x) = (x, ∗) and i2(y) = (∗, y), respectively.

Conversely, suppose that for each map f : X×Y → X×Y , fX ≃ fXX ◦pX .
For u, v ∈ [X × Y,X ], define g : X × Y → X × Y and h : X × Y → X × Y

by g = (u, pY ) and h = (v, pY ), respectively. Then gX = u and hX = v. If
j♯(u) = j♯(v), then

u ≃ u ◦ iX ◦ pX = u ◦ j ◦ i1 ◦ pX ≃ v ◦ j ◦ i1 ◦ pX = v ◦ iX ◦ pX ≃ v

according to the hypothesis. Therefore j♯ is injective. Moreover, [Y,X ] = 0.
In fact, if we define f : X × Y → X × Y by f(x, y) = (w(y), y) for each map
w : Y → X , then w = fXY = fX ◦ iY ≃ fXX ◦ pX ◦ iY ≃ ∗. �

Consider the following cofibre sequence:

X ∨ Y
j

// X × Y
q

// X ∧ Y .
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This gives rise to the following Barrat-Puppe sequence:

· · · → [Σ(X ∨ Y ), X ] → [X ∧ Y,X ]
q♯

−→ [X × Y,X ]
j♯

−→ [X ∨ Y,X ].

From this sequence and Lemma 3, we arrive at the following corollary.

Corollary 3. If [X ∧ Y,X ] = 0 and [Y,X ] = 0, then fX ≃ fXX ◦ pX for each

map f : X × Y → X × Y .

According to Lemma 1, Theorem 1 and Corollary 3, we arrive at the following
corollary.

Corollary 4. Ak
#(S

1 × Sn) = Ak
S1,#(S

1 × Sn)Ak
Sn,#(S

1 × Sn) for each pair

of integers k and n such that 1 ≤ k < n.

3. Short exact sequences of monoids

In this section, we derive certain short exact sequences related to Ak
#(X ×

Y ). Paves̆ić [9, Lemma 1.3, Proposition 1.4 and Theorem 1.5] introduced the
monoid homomorphism from AutY (X × Y ) to Aut(X) and several split short
exact sequences. First, we introduce a similar monoid homomorphism.

Lemma 4. If ΦX : Ak
Y,#(X×Y ) → Ak

#(X) is a map defined by ΦX(fX , pY ) =
fXX , then ΦX is a monoid epimorphism.

Proof. Clearly, the function ΦX is surjective according to Lemma 2(b).
Since

(fX , pY ) ◦ iX = (fX ◦ iX , pY ◦ iX) = (fXX , ∗) = iX ◦ fXX ,

we have

ΦX((fX , pY ) ◦ (f
′
X , pY )) = pX ◦ (fX , pY ) ◦ (f

′
X , pY ) ◦ iX

= fX ◦ iX ◦ f ′
XX = ΦX(fX , pY ) ◦ ΦX(f ′

X , pY )

for (fX , pY ), (f
′
X , pY ) ∈ Ak

Y,#(X × Y ). Furthermore, because the induced map

πi(fX , pY ) =

(

πi(fXX) πi(fXY )
0 idπi(Y )

)

is an isomorphism for 0 ≤ i ≤ k, πi(fXX) is an isomorphism for 0 ≤ i ≤ k. �

Let AX,k
Y,#(X × Y ) denote the submonoid of Ak

Y,#(X × Y ), which consists of

(fX , pY ) ∈ Ak
Y,#(X×Y ) such that (fX , pY )◦iX = iX . Similarly, let AY,k

X,#(X×

Y ) denote the submonoid ofAk
X,#(X×Y ) which consists of (pX , fY ) ∈ Ak

X,#(X

×Y ) such that (pX , fY ) ◦ iY = iY . If (gX , pY ) ∈ KerΦX , then gX ◦ iX = idX

(that is, (gX , pY )◦iX = iX). Therefore, KerΦX = AX,k
Y,#(X×Y ). Consequently,

we have the following lemma.
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Lemma 5. There exists a split short exact sequence of monoids

1 // AX,k
Y,#(X × Y ) // Ak

Y,#(X × Y )
ΦX

// Ak
#(X) // 1,

where ΦX(fX , pY ) = fXX.

Proof. Define σX : Ak
#(X) → Ak

Y,#(X × Y ) by σX(f) = f × idY . Then σX is
the section of ΦX . �

Lemma 6. AX,k
Y,#(X × Y ) is trivial if and only if fX ≃ fXX ◦ pX for each

(fX , fY ) ∈ Ak
#(X × Y ).

Proof. Since AX,k
Y,#(X × Y ) is trivial, ΦX is an isomorphism. Moreover,

ΦX(fXX ◦ pX , pY ) = fXX ◦ pX ◦ iX = fXX = ΦX(fX , pY ).

Therefore, fX ≃ fXX ◦ pX .
Conversely, suppose that fX ≃ fXX ◦ pX . Then ΦX is a monoid monomor-

phism because ΦX(fX , pY ) = idX implies fX = pX . According to Lemma 5,

AX,k
Y,#(X × Y ) is trivial. �

Theorem 2. Assume that AX,k
Y,#(X × Y ) is trivial and that all elements of

Ak
#(X × Y ) are k-reducible. Then, there is a split short exact sequence of

monoids

1 // AY,k
X,#(X × Y ) // Ak

#(X × Y )
Φ

// Ak
#(X)×Ak

#(Y ) // 1,

where Φ is given by Φ(f) = (fXX , fY Y ) for each f ∈ Ak
#(X × Y ).

Proof. Because each f ∈ Ak
#(X × Y ) is k-reducible, the function Φ is well-

defined. Moreover, because fXX◦pX ≃ fX for (fX , fY ) ∈ Ak
#(X×Y ) according

to Lemma 6 and pX ◦ iY = ∗, we have Φ((fX , fY ) ◦ (f ′
X , f ′

Y )) = Φ((fXX ◦
pX , fY )◦(f

′
XX ◦pX , f ′

Y )) = Φ((fXX ◦pX ◦(f ′
XX ◦pX , f ′

Y ), fY ◦(f ′
XX ◦pX , f ′

Y )) =
Φ((fXX ◦ f ′

XX ◦ pX , fY ◦ (f ′
XX ◦ pX , f ′

Y )) = ((fXX ◦ f ′
XX ◦ pX) ◦ iX , fY ◦

(f ′
XX ◦ pX , f ′

Y ) ◦ iY ) = (fXX ◦ f ′
XX , fY Y ◦ f ′

Y Y ) = Φ(fX , fY ) ◦ Φ(f ′
X , f ′

Y ) for
(fX , fY ), (f

′
X , f ′

Y ) ∈ Ak
#(X × Y ). Therefore, Φ is a homomorphism.

Clearly, KerΦY = AY,k
X,#(X × Y ). Furthermore, if we define σ : Ak

#(X) ×

Ak
#(Y ) → Ak

#(X × Y ) by σ(g, g′) = g × g′, σ is clearly a homomorphism and
the section of Φ. �

From Theorem 2 and Lemma 5, we arrive at the following corollary.

Corollary 5. If both AX,k
Y,#(X × Y ) and AY,k

X,#(X × Y ) are trivial and all el-

ements of Ak
#(X × Y ) are k-reducible, then Ak

#(X × Y ) is isomorphic to the

external direct product Ak
X,#(X × Y )×Ak

Y,#(X × Y ).
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4. Self-closeness number of product spaces

In this section, we discuss the relationship between the k-reducibility and
the self-closeness number introduced by Choi and Lee [5].

Lemma 7. Let (fX , fY ) ∈ Ak
#(X × Y ). If fX ≃ fXX ◦ pX (fY ≃ fY Y ◦ pY ),

then fXY (fY X) is null homotopic.

Proof. Clearly, fXY ≃ fX ◦ iY ≃ fXX ◦ pX ◦ iY = ∗. �

Theorem 3. Let f = (fX , fY ) ∈ Ak
#(X × Y ). If fXY ≃ ∗ and fYX ≃ ∗, then

f is k-reducible.

Proof. According to the hypothesis, the induced homomorphisms πi(fXY ) and
πi(fYX) are trivial. If

Φi =

(

ϕXX ϕXY

ϕY X ϕY Y

)

is the inverse homomorphism of πi(f) for 0 ≤ i ≤ k, then the homomorphisms
ϕXX and ϕY Y are inverse homomorphisms of πi(fXX) and πi(fY Y ), respec-
tively. Therefore, f is k-reducible. �

From Theorem 3, we arrive at the following corollary.

Corollary 6. If for all f = (fX , fY ) ∈ Ak
#(X × Y ), fX ≃ fXX ◦ pX and

fY ≃ fY Y ◦ pY , then Ak
#(X × Y ) ∼= Ak

Y,#(X × Y )×Ak
X,#(X ×Y ) ∼= Ak

#(X)×

Ak
#(Y ); moreover, Ak

#(X × Y ) is the internal direct product of Ak
X,#(X × Y )

and Ak
Y,#(X × Y ).

Proof. From Corollary 5, Ak
#(X×Y ) ∼= Ak

Y,#(X×Y )×Ak
X,#(X×Y ). Moreover,

AX,k
Y,#(X × Y ) and AY,k

X,#(X × Y ) are trivial according to Lemma 6. Therefore,

Ak
#(X × Y ) ∼= Ak

#(X)×Ak
#(Y ) in agreement with Lemma 5. �

For given spaces X and Y , let f : X × Y → X × Y be a map such that
fX ≃ fXX ◦ pX . Because the projection map pX : X × Y → X is a fibration,
we obtain the following commutative diagram of fibrations:

Y
fY Y

//

iY

��

Y

iY

��

X × Y
f

//

pX

��

X × Y

pX

��

X
fXX

// X

In fact,

f ◦ iY = (fXY , fY Y ) ≃ (∗, fY Y ) = iY ◦ fY Y .
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Conversely, let g : X → X and h : Y → Y be maps such that g ◦pX ≃ pX ◦f
and iY ◦ h ≃ f ◦ iY . Because pX ◦ iX = idX , g ≃ pX ◦ f ◦ iX = fXX . Similarly,
h ≃ fY Y . Therefore, fXX : X → X and fY Y : Y → Y are representatives such
that the above diagram is homotopy commutative for any f : X×Y → X×Y .

Consider the commutative ladder of homotopy groups induced from the
above diagram:

· · · // πk+1(X) //

πk+1(fXX )

��

πk(Y ) //

πk(fY Y )

��

πk(X × Y ) //

πk(f)

��

πk(X) //

πk(fXX )

��

πk−1(Y ) //

πk−1(fY Y )

��

· · ·

· · · // πk+1(X) // πk(Y ) // πk(X × Y ) // πk(X) // πk−1(Y ) // · · ·

Using this commutative ladder, we will prove Theorem 4.
First, we recall the closeness number introduced by Choi and Lee [5]. The

self-closeness number of X denoted by NE(X) is the least nonnegative integer
k such that E(X) = Ak

#(X). That is,

NE(X) = min{k | E(X) = Ak
#(X) for k ≥ 0}.

Lemma 8 ([5, Theorem 2]). If X is a CW-complex with dimension n, then

NE(X) ≤ n.

Lemma 9 ([5, Theorem 3]). Let X and Y be CW-complexes. Then, we have

NE(X × Y ) ≥ max{NE(X), NE(Y )}.

Theorem 4. Let X and Y be CW-complexes. If each map f : X×Y → X×Y

satisfies the conditions fX ≃ fXX ◦ pX and fYX ≃ ∗, then

NE(X × Y ) = max{NE(X), NE(Y )}.

Proof. Let NE(X) = m and NE(Y ) = n. We assume m ≥ n. For each
l ≥ m, let f ∈ Al

#(X × Y ). Then, we have the commutative ladder mentioned
above. According to Lemma 7 and Theorem 3, f is l-reducible. Therefore,
fXX ∈ Al

#(X) ⊂ Am
#(X) and fY Y ∈ Al

#(Y ) ⊂ An
#(Y ). According to the

definition of the self-closeness number, Am
#(X) = E(X) and An

#(Y ) = E(Y ).

Therefore, πk(fXX) and πk(fY Y ) are automorphisms for all k ≥ 0. By the
Five Lemma, πk(f) is also an automorphism for all k ≥ 0 in the homotopy
commutative ladder. Therefore, f is a homotopy equivalence according to the
Whitehead theorem. This implies that f ∈ Al

#(X × Y ) = E(X × Y ) for each

l ≥ m. Therefore, NE(X × Y ) = m = max{NE(X), NE(Y )} in accordance
with Lemma 9 and the minimality of the self-closeness number. �

From Lemma 3, Corollary 3, Theorem 4, and [5, Corollary 2], we obtain the
following corollaries.

Corollary 7. Let X and Y be CW-complexes with [X∧Y,X ] = 0. If [X,Y ] = 0
and [Y,X ] = 0, then NE(X × Y ) = max{NE(X), NE(Y )}.

From Corollary 7 and [5, Corollary 2], we obtain the following corollary.
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Corollary 8. Let m 6= n. Then, NE(Sm × Sn) = max{m,n} provided that

πm+n(S
min{m,n}) = 0 and πmax{m,n}(S

min{m,n}) = 0.

Therefore, if 1 < n, then NE(S1×Sn) = n. Furthermore, NE(S12×S7) = 12
because π19(S

7) = 0 and π12(S
7) = 0. Similarly, NE(S8 × S12) = 12.

Suppose that X and Y are group-like spaces. Consider the cofibration

X ∨ Y
j

// X × Y
q

// X ∧ Y

and the short exact sequence of additive groups of homotopy classes obtained
from the cofibration:

0 // [X ∧ Y,X × Y ]
q♯

// [X × Y,X × Y ]
j♯

// [X ∨ Y,X × Y ] // 0 .

All elements of [X ∨ Y,X × Y ] can be identified with the 2× 2 matrix

(fIJ) =

(

fXX fXY

fYX fY Y

)

with entries fIJ in the homotopy sets [I, J ] for I, J = X,Y . In [11, Corollary 7],
it was shown that if [X∧Y,X×Y ] = 0, the group of self-homotopy equivalences
of X × Y is GL(2,ΛIJ) contained in [X ∨ Y,X × Y ], the group of invertible
matrices with entries fIJ ∈ ΛIJ = [I, J ] for I, J = X,Y .

Theorem 5. Let X and Y be group-like spaces such that [X ∧ Y,X × Y ] = 0
and [Y,X ] = 0. If f is a self-map of X×Y such that fXX ∈ E(X), fY Y ∈ E(Y )
and (fXX)−1 are H-maps, then f is a self-homotopy equivalence.

Proof. Let f be a self-map of X × Y such that fXX ∈ E(X), fY Y ∈ E(Y ) and
(fXX)−1 are H-maps. Under the condition [Y,X ] = 0, each element (fIJ) in
[X ∨ Y,X × Y ] has a left inverse and a right inverse

(

(fXX)−1 −(fXX)−1 ◦ fXY ◦ (fY Y )
−1

0 (fY Y )
−1

)

and
(

(fXX)−1 (fXX)−1 ◦ (−fXY ) ◦ (fY Y )
−1

0 (fY Y )
−1

)

,

respectively. Therefore, if −(fXX)−1 ◦ fXY ◦ (fY Y )
−1 = (fXX)−1 ◦ (−fXY ) ◦

(fY Y )
−1, [X ∨Y,X×Y ] = GL(2,ΛIJ). Let m and a be the multiplication and

the homotopy inverse of X , respectively. Then,

∗ = (fXX)−1 ◦ ∗ ◦ fXY

= (fXX)−1 ◦m(id× a) ◦ (fXY × fXY )∆

= (fXX)−1 ◦m(fXY × (a ◦ fXY ))∆

= m((fXX)−1 × (fXX)−1)(fXY × ((a ◦ fXY ))∆

= m(((fXX)−1 ◦ fXY )× ((fXX)−1 ◦ ((a ◦ fXY )))∆,
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where ∆ : Y → Y × Y is the diagonal map. Therefore, we have

((fXX)−1 ◦ fXY + (fXX)−1 ◦ (−fXY ))(fY Y )
−1

= ((fXX)−1 ◦ fXY ◦ (fY Y )
−1 + (fXX)−1 ◦ (−fXY ) ◦ (fY Y )

−1 = 0,

and further, −(fXX)−1 ◦ fXY ◦ (fY Y )
−1 = (fXX)−1 ◦ (−fXY ) ◦ (fY Y )

−1. Con-
sequently, there is a unique homotopy inverse for each (fIJ) in [X ∨ Y,X × Y ].
In accordance with [11, Corollary 7], f is a self-homotopy equivalence. �

From Theorem 5, we obtain the following corollary.

Corollary 9. For each pair of integers m and n such that 1 ≤ m < n and the

abelian groups G and H,

NE(K(G,m)×K(H,n)) = n,

where K(G,m) and K(H,n) are Eilenberg-MacLane spaces.

Proof. Let X = K(G,m) and Y = K(H,n). Then, X and Y are group-like
spaces and [X ∧Y,X×Y ] = 0. For every map fXX ∈ [X,X ], fXX is an H-map
because X = K(G,m) = ΩK(G,m + 1). Since m < n, [Y,X ] = 0. According
to Lemma 1, every element of Ak

#(X × Y ) is k-reducible. Moreover, An
#(X) =

E(X), An
#(Y ) = E(Y ), and NE(X × Y ) ≥ max{NE(X), NE(Y )} = n because

NE(K(G,m)) = m < n = NE(K(H,n)). Therefore, An
#(X × Y ) = E(X × Y )

in accordance with Theorem 5. �
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