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FACTORIZATION OF CERTAIN SELF-MAPS
OF PRODUCT SPACES

SANGWOO JUN AND KEE YOUNG LEE

ABSTRACT. In this paper, we show that, under some conditions, self-maps
of product spaces can be represented by the composition of two specific
self-maps if their induced homomorphism on the i-th homotopy group
is an automorphism for all ¢ in some section of positive integers. As an
application, we obtain closeness numbers of several product spaces.

1. Introduction

For a connected pointed topological space X, let £(X) denote the set of
homotopy classes of pointed self-maps of X that are homotopy equivalences.
Then, £(X) is a group with a group operation given by a composition of homo-
topy classes. Let [X, X] be the set of all based homotopy classes of self-maps
of X. When [X, X] is given by a composition of homotopy classes, the set is a
monoid. Choi and Lee [5] studied certain submonoid of [X, X| containing £(X)
as a set. If A’;#(X ) denotes the set of homotopy classes of self-maps of X that
induce an automorphism of m;(X) for 0 < i < k, then A’;#(X ) is a submonoid
of [X, X] with an operation given by a composition of homotopy classes for
any nonnegative integer k. If & = oo, we simply denote A (X) as A (X).
By definition, A% (X) C AZ(X) if n > m. Therefore, we have the following
descending series:

E(X) € Ap(X) C - € AY(X) € AY(X) = [X, X].

-
For any connected CW-complex X, Ax(X) = £(X) according to the White-
head theorem.

The group £(X x Y) has been studied extensively by several authors, for
instance, Booth and Heath [3], Heath [6], Lee [7], Pavesi¢ [8-10] and Sieradski
[11]. In particular, Pavesi¢ [9] demonstrated that the group of self-homotopy
equivalences £(X x Y') can be represented as a product of two subgroups under
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the assumption that the self-equivalences of X x Y can be diagonalized (or are
reducible). In this study, we examine the sufficient conditions under which all
elements of the submonoid A% (X x Y) of [X x Y, X x Y] can be factorized by
two specific self-maps for a non-negative integer k. In Section 2, we introduce
the concept of k-reducibility and find several conditions for the factorization of
A’;#(X x Y). In Section 3, we study the split short exact sequences of several
monoids. In Section 4, we discuss an alternative idea of the k-reducibility in the
category of CW-complexes and their relationships with self-closeness numbers
[5] of product spaces.

Let ix and iy denote the inclusions (as slices determined by the base-points)
of X and Y in X x Y, respectively, and px and py be the projections of
X XY onto X and Y, respectively. Given a selfmap f: X xY — X xY
and I,J € {X,Y}, write f; : X XY — I for the composition f; := pro f
so that f is represented componentwise as f = (fx,fy) and fr; : J = I
for the composition f;; := pro f oiy. The self-homotopy equivalence f of
X XY can be diagonalized (or is reducible) if fxx and fyy are self-homotopy
equivalences of X and Y, respectively [8]. Now, we recall that the isomorphism
U:mp(X XY) = mp(X) x 1 (Y) is given by ¥ = (px#,pys) with the inverse
®, where ®(«, 8) = ixg(a) +iyvx(B8) for (o, 8) € mp(X) X m,(Y). Therefore,
for given self-map f: X xY — X x Y, the induced homomorphism 7, (f) can
be identified with the 2 x 2 matrix

oy milfxx) mlfxy)
mi(f) = ( mi(fyx) m(fyy) )

We refer to this 2 x 2-matrix as the matriz representation of the homomor-
phism 7;(f) throughout this paper. Given two self-maps f,g: X XY — X xY,
the induced homomorphism 7;(f o g) of the composition f o g can be identified
with the multiplication of their matrix representations.

Throughout this paper, all spaces are pointed, connected and have the ho-
motopy type of a CW-complex with an abelian fundamental group. Moreover,
all maps and homotopies preserve the base points and we do not distinguish

between the notation of a map f : X — Y and that of its homotopy class in
(X, Y].

Acknowledgment. We are very grateful to the referee whose constructive
remarks considerably improved the original manuscript.

2. Internal direct product of Alj(,#(X X Y) and A’{,’#(X XY)

In this section, we discuss the factorization of A’;(X x Y) into two sub-
monoids. We begin by introducing the following definition.

Definition 1. The self map f: X xY — X x Y is said to be k- reducible if
fXX S A%(X) and fyy S AQ(Y)

According to the definition, if a self-map f: X x Y — X X Y is reducible,
then f is k-reducible for each non-negative integer k. However, the converse
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does not hold. On the other hand, it is easy to show that if a self-homotopy
equivalence f : X XY — X x Y is oo-reducible, f is reducible on £(X x Y)
according to the Whitehead theorem.

Example 1. For 2 < m < n, let f: 5™ — S™ and g : S™ — S™ be maps
with deg(f)=2. Because S™ is (m — 1)-connected, 7 (f) € Aut(m;(S™)) and
mi(g) € Aut(mp(S™)) for 0 < k < m — 1. However, m,(f) is not surjective
because deg(f)=2. Therefore, f x g is (m — 1)-reducible but not reducible on
E(X XY).

Given two abelian groups G and H, an homomorphism X : H — G is said to
be R-quasi-reqular if for any homomorphism p : G — H, the function tdg — A\
given by (idg — A\u)(g) = g — A((1(g)) is an automorphism of G. Similarly, A is
said to be L-quasi-regular if idg — pA is an automorphism of H. Moreover, an
homomorphism A : H — G is said to be RL-quasi-reqular if it is R-quasi-regular
and L-quasi-regular. Clearly, if Hom(G, H) or Hom(H, G) is trivial, then each
homomorphism in Hom(H, G) is RL-quasi-regular.

Lemma 1. If f is an element of A’;#(X x Y) such that m;(fxy) is RL-quasi-
regular for 0 < ¢ < k, then f is k-reducible.

Proof. For each f = (fx, fy) € A’; (X xY), the induced homomorphism 7;(f)
belongs to Aut(m;(X x Y)) for 0 <4 < k. For 0 < i < k, the homomorphism

w0 =( 5 o)

has an inverse homomorphism ®; of m;(f). Let

d; = < PXX PXY )

PYX Pyy
be the matrix representation. Then, m;(f) o ®; = id,, (xxy) implies that
mi(fxx)exx + mi(fxv)eyx = idq(x). Since m(fxy) is R-quasi-regular,

7i(fxx) is an isomorphism for 0 < i < k. Similarly, ®; o m;(f) = idy, (xxv)
implies that oy xm(fxv) + ovymi(fyry) = id,(yy- Since mi(fxvy) is L-quasi-
regular, 7;(fyy) is an isomorphism for 0 < i < k. O

We define the subset A’;C#(X x Y) as the set of all maps in A’;(X xY)
with the form f = (px,fy) : X xY — X x Y. Similarly, we define the
subset Alf/,#(X x Y) as the set of all maps in A’;(X x Y) with the form
f:(fx,py) X xY X xY.

Lemma 2. (a) A% (X xY) and A} (X xY) are submonoids of A% (X xY)
for any nonnegative integer k.

(b) (px,9) € A’;C#(X xY) if and only if goiy € AQ(Y).

(c) (f,py) € AV 4 (X xY) if and only if foix € AL(X).
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Proof. (a) For the given elements (px,fy) and (px,gy) in A% ,(X xY),

we have (px, fy) o (px,9v) = (px, fy o (px,9y)). Moreover, the induced
homomorphisms 7;(px, fy) and 7;(px, gy ) are in Aut(m; (X xY)) for 0 < i < k.

Therefore, m;(px, fv) o mi(px, 9v) = m((px, fr) o (px,9y)) € Aut(m(X xY))
for 0 < i < k. It follows that (px, fy) o (px,9y) € A’)“(’#(X x Y). Clearly,

(px, fy)o((px,9v) o (px,hy)) = ((px. fr) o (px, 9v)) o (px, hy) and (px.py)
is an identity of A% , (X x Y).

(b) Suppose (px,g) € .A’;(’#(X x Y). Then, the matrix representation of
isomorphism 7;(px, g) for 0 <14 < k is given by

idy, () 0
mi(goix) mi(goiy) )

Therefore, 7;(g o iy) is an isomorphism on 7;(Y") for 0 < ¢ < k.

Conversely, suppose that goiy € A’; (Y). Then the inverse of m;(px,g) is
represented by

idy,(x) 0
mi(goiy)Tto(~mi(goix)) mi(goiy)™t )’

where —m;(g oix) : m(X) — m(Y) is the homomorphism given by —m;(g o
ix)(a) = =(mi(goix)(a)) in m;(Y) for each a € m;(X).

(c) This can be proved in a similar method to that of (b). O

Corollary 1. If f = (fx, fv) € A%(X x Y) is k-reducible, then (px, fy) €
A% (X X Y) and (fx,py) € Ab (X xY).

Let U be a monoid and S and T be submonoids of U. Then U is called the
internal direct product of S and T if

(1) U is uniquely factorizable with factors S and T

(2) for all s € S and for all t € T', st = ts.

On the other hand, the monoid S x T = {(s,t) | s € S,t € T} is called the
external direct product of the two monoids S and T if the binary operation is
given by (s,t)(s',¢') = (ss',¢t') on S x T with the identity (1g, 17).

In [8], Pavesi¢ showed that if X and Y are connected CW-complexes and
all self-homotopy equivalences of X X Y are reducible, then Aut(X x Y) =
Autx (X x Y)Auty (X xY). Here, we discuss the factorization of A’; (X xY)
into A’)“(V#(X x Y) and A’f,ﬁ 4(X xY). However, we cannot apply the method
in [8] to A;E (X xY) directly because not all elements of A’;#(X xY') are always
self-homotopy equivalences.

Theorem 1. Suppose that each f = (fx, fy) € AI;#(X x Y is k-reducible and
fy ~ fyy opy. Then

AL (X xY) = A 4 (X X Y)AV 4 (X xY).

Furthermore, if fx ~ fxxopx, then (px, fy)o(fx,py) = (fx,pv)o(px, fr).
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Proof. According to Corollary 1, (px, fy) € A’)“(’#(X xY) and (fx,py) €
A’f/’#(X x Y), and therefore, they are contained in A;E(X x Y). Moreover,
because A% (X x Y) N A?#(X xY) = {(px,py)}, it is sufficient to show
that each element f = (fx, fy) € AL (X x Y) can be factored as f = g o h,

whe}fe ge A (X xY)and h e A@y#(X x Y'). Via a the direct computation,
we have

= (fx, fy o (fx,py))

~ (fx, fvy opy o (fx,pv))

= (fx, frv opy)

~ (fx, fy)- O

From Theorem 1, we arrive at the following corollary.

Corollary 2. If f = (fx, fy) € A’;(X xY) is k-reducible and fx ~ fxxopx
and fy ~ fyyopy, then A’;E(X xY) is the internal direct product ofAlj(ﬁ#(X X
Y) and A5 ,(X xY).

(px, fy) o (fx,py)

Consider the inclusion map j: X VY — X x Y, where X VY is the wedge
product of X and Y. Then we arrive at the following lemma.

Lemma 3. j*: [X x Y, X]| — [X VY, X] is injective and [Y, X] = 0 if and only
if for each map f: X XY - X XY, fx ~ fxx opx.

Proof. Suppose that j* is injective. It suffices to show that j#(fx) = fx 0oj =
fxxopxoj=j*(fxxopx). This is true because
Ixxopxojoir=fxxopxoix =fxoix =fxojou
and
fxxopxojoiz= fxxopxoiy @*= fxy = fx oiy = fx 0joia,
where i1 : X = X VY and is : Y — X VY are injective maps defined by
11(x) = (z,*) and i2(y) = (x,y), respectively.

Conversely, suppose that for eachmap f: X xY — X XY, fx >~ fxxopx.
For u,v € [X XY, X], defineg: X xY > X xYand h: X XY - X xY
by g = (u,py) and h = (v, py), respectively. Then gx = u and hx = v. If
7*(u) = j¥(v), then

UNUOIXOPX =UOJOL]OPx XVOJOiOPx =VOIx OpPx MU

according to the hypothesis. Therefore j* is injective. Moreover, [Y, X] = 0.
In fact, if we define f: X XY — X xY by f(z,y) = (w(y),y) for each map
w:Y — X, then w= fxy = fxoiy = fxx opx oly == *. O

Consider the following cofibre sequence:

XVvY 1o Xxy—Lsxay.
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This gives rise to the following Barrat—Puppe sequence:

S [E(XVY),X] = [XAY, X] L [XxYX] [X\/YX]
From this sequence and Lemma 3, we arrive at the following corollary.

Corollary 3. If [ X AY,X]| =0 and [Y, X] =0, then fx ~ fxx opx for each
map f: X XY - X xY.

According to Lemma 1, Theorem 1 and Corollary 3, we arrive at the following
corollary.

Corollary 4. A;E(Sl x S") = Algly#(Sl X 5”")./4’%,7‘;&(,5’1 x S™) for each pair
of integers k and n such that 1 < k < n.

3. Short exact sequences of monoids

In this section, we derive certain short exact sequences related to A’;(X X
Y). Pavesi¢ [9, Lemma 1.3, Proposition 1.4 and Theorem 1.5] introduced the
monoid homomorphism from Auty (X x Y) to Aut(X) and several split short
exact sequences. First, we introduce a similar monoid homomorphism.

Lemma 4. If®x : A’{,ﬁ#(X xY) — A%(X) is a map defined by Px (fx,py) =
fxx, then ®x is a monoid epimorphism.

Proof. Clearly, the function ®x is surjective according to Lemma 2(b).
Since
(fx,py)oix = (fx oix,py oix) = (fxx,*) =ix o fxx,

we have

q)X((fXapY) © (f;(va)) =pxo (fXapY) © (f;(va) OiX
= fxoixo fxx = Px(fx,py) o ®x(fx,py)

for (fx,py), (f%,py) € A?#(X x Y'). Furthermore, because the induced map

i =G 5

is an isomorphism for 0 < i < k, m;(fxx) is an isomorphism for 0 <i < k. O

Let AX y (X xY) denote the submonoid of A’f/,#(X x Y'), which consists of
(fx,py) € A 4 (X xY) such that (fx,py)oix = ix. Similarly, let A}", (X x
Y') denote the submonmd of A% (X xY') which consists of (px, fy) € A% 4 (X
xY') such that (px, fy) ciy = ’Ly If (9x,py) € Ker®x, then gx oix = idx
(that is, (gx,py)oix = ix). Therefore, Ker®x = Aé;(X xY'). Consequently,

we have the following lemma.
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Lemma 5. There exists a split short exact sequence of monoids
L AXE (X X Y) > AL (X % V) s Al (X) —— 1,

where ®x (fx,py) = fxx-

Proof. Define ox : A;E(X) — A’{,ﬁ#(X xY) by ox(f) = f x idy. Then ox is
the section of ®x. O

Lemma 6. Ai,(’;(X x Y) is trivial if and only if fx ~ fxx opx for each

(fx, fr) € AZ&(X xY).

Proof. Since Ai,(; (X xY) is trivial, ®x is an isomorphism. Moreover,

Ox(fxxopx,py) = fxxopxoix = fxx = ®x(fx,py).

Therefore, fx ~ fxx opx.

Conversely, suppose that fx >~ fxx opx. Then ®x is a monoid monomor-
phism because ®x(fx,py) = idx implies fx = px. According to Lemma 5,
AP (X x Y) is trivial. O

Theorem 2. Assume that Ai,(’;(X x Y) is trivial and that all elements of

A’;#(X x Y) are k-reducible. Then, there is a split short exact sequence of
monoids

11— AR5 (X x V) —= AL (X x V) —= A5 (X) x AL (V) — 1,
where @ is given by ®(f) = (fxx, fyy) for each f € A’;#(X xY).

Proof. Because each f € A’;#(X x Y) is k-reducible, the function ® is well-
defined. Moreover, because fxxopx ~ fx for (fx, fv) € A%(XXY) according
to Lemma 6 and px o iy = %, we have ®((fx, fy) o (f%,f})) = ®((fxx o
px, fy)o(fxxoprx, fy)) = ®((fxxopxo(fyxxorx, fy), fro(fxxorx, fy)) =
O((fxx o fxx opx,fy o (fxx o px, fy)) = ((fxx o fxx opx) oix, fy o
(fxx opx, fy)oiv) = (fxx o fyx,fyyv o fyy) = @(fx, fr) o ®(fx, fy) for
(Fx, fy), (f%. fi) € A%(X x Y'). Therefore, ® is a homomorphism.

Clearly, Ker®y = A%*, (X x Y). Furthermore, if we define o : A% (X) x
X, # #

A’;#(Y) — A’;#(X xY) by o(g9,9') = g x ¢, o is clearly a homomorphism and

the section of ®. (|

From Theorem 2 and Lemma 5, we arrive at the following corollary.

Corollary 5. If both A§7§E(X xY) and A;Z#(X xY) are trivial and all el-
ements of A’;(X x Y) are k-reducible, then A%(X x Y') is isomorphic to the
external direct product A’§(7#(X xY) x A§7#(X xY).
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4. Self-closeness number of product spaces

In this section, we discuss the relationship between the k-reducibility and
the self-closeness number introduced by Choi and Lee [5].

Lemma 7. Let (fX,fY) (S A;{:(X X Y) If fX ~ fXX opx (fy ~ fyy Opy),
then fxy (fyx) is null homotopic.

Proof. Clearly, fxy ~ fx oty =~ fxx opx 0ly = *. 0

Theorem 3. Let f = (fx, fv) € A’;#(X xY). If fxy ~x and fyx ~ %, then
f is k-reducible.

Proof. According to the hypothesis, the induced homomorphisms ;(fxy) and

mi(fyx) are trivial. If
B, = < XX @YXy )
Pyx Pyy

is the inverse homomorphism of 7;(f) for 0 < i < k, then the homomorphisms
pxx and pyy are inverse homomorphisms of 7;(fxx) and m;(fyy), respec-
tively. Therefore, f is k-reducible. (I

From Theorem 3, we arrive at the following corollary.

Corollary 6. If for all f = (fx,fy) € A’;(X xY), fx = fxx opx and
fy = fyy opy, then AL (X xY) = A} (X x V) x A% (X x V) = A% (X) x
A’;(Y); moreover, AL (X xY) is the internal direct product of A’)“(y#(X xY)
and A?#(X xY).

Proof. From Corollary 5, A% (X xY) & A} (X xY)x A% , (X xY). Moreover,
Aé’i(X xY) and A;Z#(X x Y') are trivial according to Lemma 6. Therefore,
AL (X x V) = AL (X) x AL (Y) in agreement with Lemma 5. O

For given spaces X and Y, let f : X XY — X XY be a map such that

fx =~ fxx opx. Because the projection map px : X x Y — X is a fibration,
we obtain the following commutative diagram of fibrations:

Y —Y

In fact,

foiyv =(fxv, fyryv) > (*, fyry) =ty o fyy.
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Conversely, let g : X — X and h : Y — Y be maps such that gopx ~pxof
and iy oh ~ foiy. Because px oix =idx, g ~px o foix = fxx. Similarly,
h ~ fyy. Therefore, fxx : X — X and fyy : Y — Y are representatives such

that the above diagram is homotopy commutative for any f: X xY — X x Y.
Consider the commutative ladder of homotopy groups induced from the
above diagram:

e — Trk+1(X) ——— T (V) ——= mp (X XY) ——= mp (X)) ——= 71 (V) ——— - -+

lwk+1(fxx) l‘"k(fyy) l‘ﬂ'k(f) l‘"k(fxx) lﬂkl(fyy)

o T 1 (X)) ———= T (YY) ————=> (X XY) ———= 1 (X)) ———=> 71 (YV) ———> -

Using this commutative ladder, we will prove Theorem 4.

First, we recall the closeness number introduced by Choi and Lee [5]. The
self-closeness number of X denoted by NE(X) is the least nonnegative integer
k such that £(X) = A% (X). That is,

NE(X) = minf{k | £(X) = AL (X) for k > 0}.
Lemma 8 ([5, Theorem 2]). If X is a CW-complex with dimension n, then
NE(X) < n.
Lemma 9 ([5, Theorem 3]). Let X and Y be CW-complezes. Then, we have
NEX xY) > max{NE(X),NE(Y)}.

Theorem 4. Let X and Y be CW-complexes. If each map f: X XY — X XY
satisfies the conditions fx ~ fxx opx and fyx =~ x, then

NE(X xY) =max{NE(X),NECY)}.

Proof. Let NE(X) = m and NE(Y) = n. We assume m > n. For each
I>m,let f e A;E(X X Y). Then, we have the commutative ladder mentioned
above. According to Lemma 7 and Theorem 3, f is l-reducible. Therefore,
fxx € AL(X) C AZ(X) and fyy € AL(Y) € AL(Y). According to the
definition of the self-closeness number, A%(X) = £(X) and AL(Y) = £(Y).
Therefore, 7 (fxx) and 7 (fyy) are automorphisms for all £ > 0. By the
Five Lemma, 7 (f) is also an automorphism for all £ > 0 in the homotopy
commutative ladder. Therefore, f is a homotopy equivalence according to the
Whitehead theorem. This implies that f € AL (X xY) = £(X x Y) for each
I > m. Therefore, NE(X xY) = m = max{NE(X),NE(Y)} in accordance
with Lemma 9 and the minimality of the self-closeness number. O

From Lemma 3, Corollary 3, Theorem 4, and [5, Corollary 2], we obtain the
following corollaries.

Corollary 7. Let X andY be CW-complexes with [XA\Y,X] =0. If[X,Y] =0
and [Y,X] =0, then NE(X xY) = max{NE(X),NE(Y)}.

From Corollary 7 and [5, Corollary 2], we obtain the following corollary.
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Corollary 8. Let m # n. Then, NE(S™ x S™) = max{m,n} provided that
Tman (S™m}y = 0 and ﬂmax{mm}(Smi“{m’"}) =0.

Therefore, if 1 < n, then NE(S!xS™) = n. Furthermore, NE(S2x ST) = 12
because 719(S7) = 0 and 712(S7) = 0. Similarly, NE(S8 x §'2) = 12.
Suppose that X and Y are group-like spaces. Consider the cofibration

XVY - XxY 2o XY

and the short exact sequence of additive groups of homotopy classes obtained
from the cofibration:

# i
0—=[XAY, X xY] > [XxY,XXY] 2> [XVY,X xY] —=0.

All elements of [X VY, X X Y] can be identified with the 2 x 2 matrix
_( Ixx fxvy
(fr1) = ( fyx fry

with entries fr; in the homotopy sets [, J] for I, J = X, Y. In[11, Corollary 7],
it was shown that if [X AY, X x Y] = 0, the group of self-homotopy equivalences
of X xY is GL(2,A1;) contained in [X VY, X x Y], the group of invertible
matrices with entries fr; € Ary =[I,J] for I,J=X,Y.

Theorem 5. Let X and Y be group-like spaces such that [X NY, X xY] =0
and [Y, X] = 0. If f is a self-map of X XY such that fxx € E(X), fyy € EY)
and (fxx)~1' are H-maps, then f is a self-homotopy equivalence.

Proof. Let f be a self-map of X x Y such that fxx € £(X), fyy € £(Y) and
(fxx)~! are H-maps. Under the condition [V, X] = 0, each element (fr;) in
[X VY, X x Y] has a left inverse and a right inverse

< ()™ —(fXX)_zjny;)gglo (fyv)! )

and
( (fxx)™" (fxx)lo(=fxv)o(fyy)™! >
0 (fyy)™? '

respectively. Therefore, if —(fxx) ' o fxy o (fyy)™' = (fxx) 'o(—fxy)o
(fyv) L [XVY, X xY]=GL(2,A1;). Let m and a be the multiplication and
the homotopy inverse of X, respectively. Then,

* = (fXX)_1 o*o fxy
= (fxx) tom(id x a) o (fxy X fxy)A
= (fxx)""om(fxy x (a0 fxy))A
=m((fxx)"" x (fxx)")(fxy x ((ao fxy))A
=m(((fxx)" o fxy) x (fxx) " o ((ao fxy)))A,
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where A : Y — Y x Y is the diagonal map. Therefore, we have

((fxx) "o fxy + (fxx) " o (= fxy))(fyy) ™!
= ((fxx)tofxyo(fyy) ™' + (fxx) to(—fxy)o(fyy) =0,

and further, —(fxx)™"o fxy o (fyy)™' = (fxx) " o(=fxy)o(fyy)~!. Con-
sequently, there is a unique homotopy inverse for each (f;;) in [X VY, X x Y.
In accordance with [11, Corollary 7], f is a self-homotopy equivalence. O

From Theorem 5, we obtain the following corollary.

Corollary 9. For each pair of integers m and n such that 1 < m < n and the
abelian groups G and H,

NE(K(G,m) x K(H,n)) =n,
where K(G,m) and K(H,n) are Eilenberg-MacLane spaces.

Proof. Let X = K(G,m) and Y = K(H,n). Then, X and Y are group-like
spaces and [X AY, X x Y] = 0. For every map fxx € [X, X], fxx is an H-map
because X = K(G,m) = QK (G, m + 1). Since m < n, [Y, X] = 0. According
to Lemma 1, every element of A’; (X xY) is k-reducible. Moreover, A% (X) =
E(X), AL(Y) =£&(Y), and NE(X x V) > max{NE(X), NE(Y)} = n because
NE(K(G,m)) =m <n= NE(K(H,n)). Therefore, A% (X x V) =E(X xY)
in accordance with Theorem 5. (]
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