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HYPERSURFACES OF INFINITE TYPE WITH NULL

TANGENTIAL HOLOMORPHIC VECTOR FIELDS

Ninh Van Thu

Abstract. In this paper, we introduce the condition (I) (cf. Section 2)
and prove that there is no nontrivial tangential holomorphic vector field
of a certain hypersurface of infinite type in C2.

1. Introduction

Let (M,p) be a real C1-smooth hypersurface germ at p ∈ C
n. A smooth

vector field germ (X, p) on M is called a real-analytic infinitesimal CR au-

tomorphism germ at p of M if there exists a holomorphic vector field germ
(H, p) in Cn such that H is tangent to M , i.e., Re H is tangent to M , and
X = Re H |M . We denote by hol0(M,p) the real vector space of holomorphic
vector field germs (H, p) vanishing at p which are tangent to M .

In several complex variables, such tangential holomorphic vector fields arise
naturally from the action by the automorphism group of a domain. If Ω is a
smoothly bounded domain in C

n and if its automorphism group Aut(Ω)∩C1(Ω)
contains a one-parameter subgroup, say {ϕt}, i.e., ϕt+s = ϕt◦ϕs for all t, s ∈ R

and ϕ0 = idΩ, then the t-derivative generates a holomorphic vector field tangent
to ∂Ω.

In [1], J. Byun et al. proved that hol0(M,p) = {iβz2 ∂
∂z2

: β ∈ R} for any

C∞-smooth radially symmetric real hypersurfaceM ⊂ C2 of infinite type at the
origin. Recently, A. Hayashimoto and the author [3] showed that hol0(MP , 0)
is trivial for any non-radially symmetric infinite type model

MP := {(z1, z2) ∈ C
2 : Re z1 + P (z2) = 0},

where P is non-radially symmetric real-valued C∞-smooth function satisfying
that P vanishes to infinite order at z2 = 0 and that the connected component
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of 0 in the zero set of P is {0}. However, many functions, such as

P (z2) = exp
(

− 1

|Re(z2)|2
)

,

do not satisfy this condition.
In this paper, we shall introduce the condition (I) (cf. Section 2) and prove

that hol0(M,p) of a certain hypersurface of infinite type M in C2 is trivial. To
state the result explicitly, we need some notations and a definition. Taking the
risk of confusion we employ the notations

P ′(z) = Pz(z) =
∂P

∂z
(z)

throughout the article. Also denote by ∆r = {z ∈ C : |z| < r} for r > 0 and by
∆ = ∆1. A function f defined on ∆r (r > 0) is called to be flat at the origin
if f(z) = o(|z|n) for each n ∈ N (cf. Definition 1). In what follows, . and &

denote inequalities up to a positive constant multiple. In addition, we use ≈
for the combination of . and &.

The aim of this paper is to prove the following theorem.

Theorem 1. If a C1-smooth hypersurface germ (M, 0) is defined by the equa-

tion ρ(z) := ρ(z1, z2) = Re z1+P (z2)+ (Im z1)Q(z2, Im z1) = 0, satisfying the

conditions:

(i) P 6≡ 0, P (0) = Q(0, 0) = 0;
(ii) P satisfies the condition (I) (cf. Definition 2 in Section 2);
(iii) P is flat at z2 = 0,

then any holomorphic vector field vanishing at the origin tangent to (M, 0) is

identically zero.

Remark 1. If P and Q are C∞-smooth, then Theorem 1 gives a partial answer
to the Greene-Krantz conjecture, which states that for a smoothly bounded
pseudoconvex domain admitting a non-compact automorphism group, the point
orbits can accumulate only at a point of finite type [2].

This paper is organized as follows. In Section 2, the condition (I) and several
examples are introduced. In Section 3, several technical lemmas are proved and
the proof of Theorem 1 is finally given.

2. Functions vanishing to infinite order

First of all, we recall the following definition.

Definition 1. A function f : ∆ǫ0 → C (ǫ0 > 0) is called to be flat at z = 0
if for each n ∈ N there exist positive constants C, ǫ > 0, depending only on n,
with 0 < ǫ < ǫ0 such that

|f(z)| ≤ C|z|n

for all z ∈ ∆ǫ.
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We note that in the above definition we do not need the smoothness of the
function f . For example, the following function

f(z) =

{

1
ne

− 1
|z|2 if 1

n+1 < |z| ≤ 1
n , n = 1, 2, . . .

0 if z = 0

is flat at z = 0 but not continuous on ∆. However, if f ∈ C∞(∆ǫ0), then it
follows from the Taylor’s theorem that f is flat at z = 0 if and only if

∂m+n

∂zm∂z̄n
f(0) = 0

for every m,n ∈ N, i.e., f vanishes to infinite order at 0. Consequently, if

f ∈ C∞(∆ǫ0) is flat at 0, then
∂m+nf
∂zm∂z̄n is also flat at 0 for each m,n ∈ N.

We now introduce the condition (I) and give several examples of functions
defined on the open unit disc in the complex plane with infinite order of van-
ishing at the origin.

Definition 2. We say that a real C1-smooth function f defined on a neighbor-
hood U of the origin in C satisfies the condition (I) if

(I.1) lim supŨ∋z→0 |Re(bzk
f ′(z)
f(z) )| = +∞;

(I.2) lim supŨ∋z→0 |
f ′(z)
f(z) | = +∞

for all k = 1, 2, . . . and for all b ∈ C∗, where Ũ := {z ∈ U : f(z) 6= 0}.

Example 1. The function P (z) = e−C/|Re(z)|α if Re(z) 6= 0 and P (z) =
0 if otherwise, where C,α > 0, satisfies the condition (I). Indeed, a direct
computation shows that

P ′(z) = P (z)
Cα

2|Re(z)|α+1

for all z ∈ C with Re(z) 6= 0. Therefore, it is easy to see that |P ′(z)/P (z)| →
+∞ as z → 0 in the domain {z ∈ C : Re(z) 6= 0}.

Now we shall prove that the condition (I.1) holds. Let k be an arbitrary
positive integer. Let zl := 1/l + i/lβ, where 0 < β < min{1, α/(k − 1)} if
k > 1 and β = 1/2 if k = 1, for all l ∈ N∗. Then zl → 0 as l → ∞ and
Re(zl) = 1/l 6= 0 for all l ∈ N∗. Moreover, for each b ∈ C∗ we have that

|Re
(

bzkl
P ′(zl)

P (zl)

)

| & lα+1

lβ(k−1)+1
= lα−β(k−1).

This implies that

lim
l→∞

|Re
(

bzkl
P ′(zl)

P (zl)

)

| = +∞.

Hence, the function P satisfies the condition (I).

Remark 2. i) Any rotational function P does not satisfy the condition (I.1)
because Re(izP ′(z)) = 0 (see [1] or [4]).
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ii) It follows from [4, Lemma 2] that if P is a non-zero C1-smooth function

defined on a neighborhood U of the origin in C, P (0) = 0, and Ũ := {z ∈
U : P (z) 6= 0} contains a C1-smooth curve γ : (0, 1] → Ũ such that γ′ stays
bounded on (0, 1] and limt→0− γ(t) = 0, then P satisfies the condition (I.2).

Lemma 1. Suppose that g : (0, 1] → R is a C1-smooth unbounded function.

Then we have lim supt→0+ t
α|g′(t)| = +∞ for any real number α < 1.

Proof. Fix an arbitrary α < 1. Suppose that, on the contrary,

lim sup
t→0+

tα|g′(t)| < +∞.

Then there is a constant C > 0 such that

|g′(t)| ≤ C

tα
, ∀ 0 < t < 1.

We now have the following estimate

|g(t)| ≤ |g(1)|+
∫ 1

t

|g′(τ)|dτ ≤ |g(1)|+ C

∫ 1

t

dτ

τα

≤ |g(1)|+ C

1− α
(1 − t1−α) . 1.

However, this is impossible since g is unbounded on (0, 1], and thus the lemma
is proved. �

In general, the above lemma does not hold for α ≥ 1. This follows from
that |t1+β d

dt
1
tβ | = β and |t ddt log(t)| = 1 for all 0 < t < 1, where β > 0.

However, the following lemmas show that there exists such a function g such
that lim inft→0+

√
t|g′(t)| < +∞ and lim supt→0+ t

β|g′(t)| = +∞ for all β < 2.
Furthermore, several examples of smooth functions vanishing to infinite order
at the origin in C and satisfying the condition (I) are constructed.

Lemma 2. There exists a C∞-smooth real-valued function g : (0, 1) → R

satisfying

(i) g(t) ≡ −2n on the closed interval [ 1
n+1 (1 +

1
3n ),

1
n+1 (1 +

2
3n )] for n =

4, 5, . . . ;
(ii) g(t) ≈ − 1

t , ∀ t ∈ (0, 1);
(iii) for each k ∈ N there exists C(k) > 0, depending only on k, such that

|g(k)(t)| ≤ C(k)
t3k+1 , ∀ t ∈ (0, 1).

Remark 3. Let

P (z) :=

{

exp(g(|z|2)) if 0 < |z| < 1

0 if z = 0.

Then this function is a C∞-smooth function on the open unit disc ∆ that
vanishes to infinite order at the origin. Moreover, we see that P ′( 2n+1

2n(n+1) ) = 0

for any n ≥ 4, and hence lim infz→0 |P ′(z)|/P (z) = 0.
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Lemma 2 was stated in [4] without proof. For the convenience of the reader,
we now introduce a detailed proof of this lemma as follows.

Proof of Lemma 2. Let G : (0,+∞) → R be the piecewise linear function such
that G(an − ǫn) = G(bn + ǫn) = −2n and G(x) = −8 if x ≥ 9

40 , where

an = 1
n+1 (1 +

1
3n ), bn = 1

n+1 (1 +
2
3n ), and ǫn = 1

n3 for every n ≥ 4.
Let ψ be a C∞-smooth function on R given by

ψ(x) = C

{

e
− 1

1−|x|2 if |x| < 1

0 if |x| ≥ 1,

where C > 0 is chosen so that
∫

R
ψ(x)dx = 1. For ǫ > 0, set ψǫ :=

1
ǫψ(

x
ǫ ). For

n ≥ 4, let gn be the C∞-smooth on R defined by the following convolution

gn(x) := G ∗ ψǫn+1(x) =

∫ +∞

−∞
G(y)ψǫn+1(y − x)dy.

Now we show the following.

(a) gn(x) = G(x) = −2n if an ≤ x ≤ bn;
(b) gn(x) = G(x) = −2(n+ 1) if an+1 ≤ x ≤ bn+1;

(c) |g(k)n (x)| ≤ 2(n+1)‖ψ(k)‖1

ǫkn+1

if an+1 ≤ x ≤ bn.

Indeed, for an+1 ≤ x ≤ bn we have

gn(x) =

∫ +∞

−∞
G(y)ψǫn+1(y − x)dy

=
1

ǫn+1

∫ +∞

−∞
G(y)ψ(

y − x

ǫn+1
)dy

=

∫ +1

−1

G(x + tǫn+1)ψ(t)dt,

where we use a change of variable t = y−x
ǫn+1

.

If an ≤ x ≤ bn, then an− ǫn < an− ǫn+1 ≤ x+ tǫn+1 ≤ bn+ ǫn+1 < bn+ ǫn
for all −1 ≤ t ≤ 1. Therefore,

gn(x) =

∫ +1

−1

G(x + tǫn+1)ψ(t)dt = −2n

∫ +1

−1

ψ(t)dt = −2n,

which proves (a). Similarly, if an+1 ≤ x ≤ bn+1, then an+1−ǫn+1 ≤ x+tǫn+1 ≤
bn+1 + ǫn+1 for every −1 ≤ t ≤ 1. Hence,

gn(x) =

∫ +1

−1

G(x+ tǫn+1)ψ(t)dt = −2(n+ 1)

∫ +1

−1

ψ(t)dt = −2(n+ 1),
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which finishes (b). Moreover, we have the following estimate

|g(k)n (x)| = 1

ǫk+1
n+1

|
∫ +∞

−∞
G(y)ψ(k)(

y − x

ǫn+1
)dy|

=
1

ǫkn+1

|
∫ +1

−1

G(x+ tǫn+1)ψ
(k)(t)dt|

≤ 1

ǫkn+1

∫ +1

−1

|G(x + tǫn+1)||ψ(k)(t)|dt

≤ 2(n+ 1)

ǫkn+1

∫ +1

−1

|ψ(k)(t)|dt

=
2(n+ 1)‖ψ(k)‖1

ǫkn+1

for an+1 ≤ x ≤ bn, where we use again a change of variable t = x−y
ǫn+1

and the last

inequality in the previous equation follows from the fact that |G(y)| ≤ 2(n+1)
for all an+1 − ǫn+1 ≤ y ≤ bn + ǫn. So, the assertion (c) is shown.

Now because of properties (a) and (b) the function

g(x) =

{

−8 if x ≥ 9
40

gn(x) if an+1 ≤ x ≤ bn, n = 4, 5, . . . ,

is well-defined. From the property (c), it is easy to show that |g(k)(x)| . 1
x3k+1

for k = 0, 1, . . . and for every x ∈ (0, 1), where the constant depends only on k.
Thus this proves (iii), and the assertions (i) and (ii) are obvious. Hence, the
proof is complete. �

Lemma 3. Let h : (0,+∞) → R be the piecewise linear function such that

h(an) = h(bn) = 22·4
n−1

, h(1/2) =
√
2 and h(t) = 0 if t ≥ 1, where an =

1/24
n

, a0 = 1/2, bn = (an + an−1)/2 for every n ∈ N∗. Then the function

f : (0, 1) → R given by

f(t) = −
∫ 1

t

h(τ)dτ

satisfies:

(i) f ′(an) =
1√
an

for every n ∈ N∗;

(ii) f ′(bn) ∼ 1
4b2n

as n→ ∞;

(iii) − 1
t . f(t) . − 1

t1/16
, ∀ 0 < t < 1.

Proof. We have f ′(an) = h(an) = 22·4
n−1

= 1√
an

, which proves (i). Since

bn = (an + an−1)/2 ∼ an−1/2 as n → ∞, we have f ′(bn) = h(bn) = 22·4
n−1

=
1

a2n−1
∼ 1

4b2n
as n → ∞. So, the assertion (ii) follows. Now we shall show (iii).
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For an arbitrary real number t ∈ (0, 1/16), denote by N the positive integer
such that

1/24
N+1 ≤ t < 1/24

N

.

Then it is easy to show that

f(t) ≤ −
∫ bN

aN

h(τ)dτ = −1

2
22·4

N−1

(1/24
N−1 − 1/24

N

)

≤ −1

2
24

N−1

+
1

8
≤ −1

2

1

t1/16
+

1

8
. − 1

t1/16
;

f(t) ≥ −2

∫ bN+1

aN+1

h(τ)dτ −
∫ 1

aN

h(τ)dτ

≥ −2h(aN+1)(bN+1 − aN+1)− h(aN )(1− aN )

≥ −22·4
N

(1/24
N − 1/24

N+1

)− 22·4
N−1

(1 − 1/24
N

)

& −1

t

for any 0 < t < 1/16. Thus (iii) is shown. �

Remark 4. i) We note that f is C1-smooth, increasing, and concave on the
interval (0, 1). By taking a suitable regularization of the function f as in the
proof of Lemma 2, we may assume that it is C∞-smooth and still satisfies the
above properties (i), (ii), and (iii). In addition, for each k ∈ N there exist

C(k) > 0 and d(k) > 0, depending only on k, such that |f (k)(t)| ≤ C(k)
td(k) , ∀ t ∈

(0, 1). Thus the function R(z) defined by

R(z) :=

{

exp(f(|z|2)) if 0 < |z| < 1

0 if z = 0

is C∞-smooth and vanishes to infinite order at the origin. Moreover, we have
lim infz→0 |R′(z)/R(z)| < +∞ and lim supz→0 |R′(z)/R(z)| = +∞.

ii) Since the functions P,R are rotational, they do not satisfy the condition

(I) (cf. Remark 2). On the other hand, the functions P̃ (z) := P (Re(z)) and

R̃(z) := R(Re(z)) satisfy the condition (I). Indeed, a simple calculation shows

R̃′(z) = R̃(z)f ′(|Re(z)|2)Re(z)
for any z ∈ C with |Re(z)| < 1. By the above property (ii), it follows that

lim supz→0 |R̃′(z)|/R̃(z) = +∞. Moreover, for each k ∈ N∗ and each b ∈ C∗

if we choose a sequence {zn} with zn :=
√
bn + i(

√
bn)

β , where 0 < β <
min{1, 2/(k − 1)} if k > 1 and β = 1/2 if k = 1, then zn → 0 as n→ ∞ and

|Re
(

bzkn
R̃′(zn)

R̃(zn)

)

| & (
√
bn)

(k−1)β+2

b2n
→ +∞

as n → ∞. Hence, R̃ satisfies the condition (I). Now it follows from the
construction of the function g in the proof of Lemma 2 that g′( 1n ) ∼ 3n2 as
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n→ ∞. Therefore, using the same argument as above we conclude that P̃ also
satisfies the condition (I).

It is not hard to show that the above functions such as P,R, P̃ , R̃ are not
subharmonic. To the author’s knowledge, it is unknown that there exists a C∞-
smooth subharmonic function P defined on the unit disc such that ν0(P ) = +∞
and lim infz→0 |P ′(z)/P (z)| < +∞.

3. Proof of Theorem 1

This section is entirely devoted to the proof of Theorem 1. Let M =
{(z1, z2) ∈ C2 : Re z1 + P (z2) + (Im z1)Q(z2, Im z1) = 0} be the real hy-
persurface germ at 0 described in the hypothesis of Theorem 1. Our present
goal is to show that there is no non-trivial holomorphic vector field vanishing
at the origin and tangent to M .

For the sake of smooth exposition, we shall present the proof in two subsec-
tions. In Subsection 3.1, several technical lemmas are introduced. Then the
proof of Theorem 1 is presented in Subsection 3.2. Throughout what follows,
for r > 0 denote by ∆̃r := {z2 ∈ ∆r : P (z2) 6= 0}.
3.1. Technical lemmas

Since P satisfies the condition (I), it is not hard to show the following two
lemmas.

Lemma 4. Let P be a function defined on ∆ǫ0 (ǫ0 > 0) satisfying the condi-

tion (I). If a, b are complex numbers and if g0, g1, g2 are C∞-smooth functions

defined on ∆ǫ0 satisfying:

(i) g0(z) = O(|z|), g1(z) = O(|z|ℓ+1), g2(z) = o(|z|m), and

(ii) Re
[

azm + b
Pn(z)

(

zℓ+1
(

1 + g0(z)
)P ′(z)
P (z) + g1(z)

)]

= g2(z)

for every z ∈ ∆̃ǫ0 and for any non-negative integers ℓ,m, except the case that

m = 0 and Re(a) = 0, then a = b = 0.

Proof. The proof follows easily from the condition (I.1). �

Lemma 5. Let P be a function defined on ∆ǫ0 (ǫ0 > 0) satisfying the condition

(I). Let B ∈ C∗ and m ∈ N∗. Then there exists α ∈ R small enough such that

lim sup
∆̃ǫ0∋z→0

|Re
(

B(iα− 1)mP ′(z)/P (z)
)

| = +∞.

Proof. Since P satisfies the condition (I.2), there exists a sequence {zk} ⊂ ∆̃ǫ0

converging to 0 such that limk→∞ P ′(zk)/P (zk) = ∞. We can write

BP ′(zk)/P (zk) = ak + ibk, k = 1, 2, . . . ;

(iα− 1)m = a(α) + ib(α).

We note that |ak| + |bk| → +∞ as k → ∞. Therefore, passing to a subse-
quence if necessary, we only consider two following cases.
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Case 1. limk→∞ ak = ∞ and | bk

ak

| . 1 . Since a(α) → (−1)m and b(α) → 0

as α→ 0, if α is small enough, then

Re
(

B(iα− 1)mP ′(zk)/P (zk)
)

= a(α)ak − b(α)bk

= ak

(

a(α)− b(α)
bk
ak

)

→ ∞

as k → ∞.
Case 2. limk→∞ bk = ∞ and limk→∞ |ak

bk

| = 0 . Fix a real number α such

that b(α) 6= 0. Then we have

Re
(

B(iα− 1)mP ′(zk)/P (zk)
)

= a(α)ak − b(α)bk

= bk

(

a(α)
ak
bk

− b(α)
)

→ ∞

as k → ∞. Hence, the proof is complete. �

3.2. Proof of Theorem 1

The CR hypersurface germ (M, 0) at the origin in C2 under consideration is
defined by the equation ρ(z1, z2) = 0, where

ρ(z1, z2) = Re z1 + P (z2) + (Im z1) Q(z2, Im z1) = 0,

where P,Q are C1-smooth functions satisfying the three conditions specified in
the hypothesis of Theorem 1, stated in Section 1. Recall that P is flat at z2 = 0
in particular.

Then we consider a holomorphic vector fieldH=h1(z1, z2)
∂
∂z1

+h2(z1, z2)
∂
∂z2

defined on a neighborhood of the origin. We only consider H that is tangent
to M , which means that they satisfy the identity

(1) (Re H)ρ(z) = 0, ∀z ∈M.

The goal is to show that H ≡ 0. Indeed, striving for a contradiction, suppose
thatH 6≡ 0. We notice that if h2 ≡ 0, then (1) shows that h1 ≡ 0. Thus, h2 6≡ 0.

Now we are going to prove that h1 ≡ 0. Indeed, suppose that h1 6≡ 0. Then
we can expand h1 and h2 into the Taylor series at the origin so that

h1(z1, z2) =

∞
∑

j,k=0

ajkz
j
1z
k
2 and h2(z1, z2) =

∞
∑

j,k=0

bjkz
j
1z
k
2 ,

where ajk, bjk ∈ C. We note that a00 = b00 = 0 since h1(0, 0) = h2(0, 0) = 0.
By a simple computation, one has

ρz1(z1, z2) =
1

2
+
Q(z2, Im z1)

2i
+ (Im z1)Qz1(z2, Im z1)

=
1

2
+
Q0(z2)

2i
+

2(Im z1)Q1(z2)

2i
+

3(Im z1)
2Q2(z2)

2i
+ · · · ;

ρz2(z1, z2) = P ′(z2) + (Im z1)Qz2(z2, Im z1),
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and the equation (1) can thus be re-written as

Re
[(1

2
+
Q(z2, Im z1)

2i
+ (Im z1)Qz1(z2, Im z1)

)

h1(z1, z2)

+
(

P ′(z2) + (Im z1)Qz2(z2, Im z1)
)

h2(z1, z2)
]

= 0

(2)

for all (z1, z2) ∈M .

Since
(

it − P (z2) − tQ(z2, t), z2

)

∈ M for any t ∈ R with t small enough,

the above equation again admits a new form

Re
[(1

2
+
Q0(z2)

2i
+

2tQ1(z2)

2i
+

3t2Q2(z2)

2i
+ · · ·

)

×
(

∞
∑

j,k=0

(

it− P (z2)− tQ0(z2)− t2Q1(z2)− · · ·
)j
ajkz

k
2

)

+
(

P ′(z2) + tQ0z2(z2) + t2Q1z2(z2) + · · ·
)

×
(

∞
∑

m,n=0

(

it− P (z2)− tQ0(z2)− t2Q1(z2)− · · ·
)m
bmnz

n
2

)]

= 0

(3)

for all z2 ∈ C and for all t ∈ R with |z2| < ǫ0 and |t| < δ0, where ǫ0 > 0 and
δ0 > 0 are small enough.

Next, let us denote by j0 the smallest integer such that aj0k 6= 0 for some
integer k. Then let k0 be the smallest integer such that aj0k0 6= 0. Similarly, let
m0 be the smallest integer such that bm0n 6= 0 for some integer n. Then denote
by n0 the smallest integer such that bm0n0 6= 0. One remarks that j0 ≥ 1 if
k0 = 0 and m0 ≥ 1 if n0 = 0.

Notice that one may choose t = αP (z2) in (3) (with α to be chosen later
on), and since P (z2) = o(|z2|n0), one has

Re
[1

2
aj0k0(iα− 1)j0(P (z2))

j0zk02 + bm0n0(iα− 1)m0(zn0
2 + o(|z2|n0)(P (z2))

m0

×
(

P ′(z2) + αP (z2)Qz2(z2, αP (z2))
)]

= o(P (z2)
j0 |z2|k0)

(4)

for all |z2| < ǫ0 and for any α ∈ R. We remark that in the case k0 = 0 and
Re(aj00) = 0, α can be chosen in such a way that Re

(

(iα−1)j0aj00
)

6= 0. Then
the above equation yields that j0 > m0.

We now divide the argument into two cases as follows.

Case 1. n0 ≥ 1. In this case (4) contradicts Lemma 4.

Case 2. n0 = 0. Since P satisfies the condition (I) and m0 ≥ 1, by Lemma 5
we can choose a real number α such that

lim sup
∆̃ǫ0∋z2→0

|Re
(

bm0(iα− 1)mP ′(z2)/P (z2)
)

| = +∞,
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where ǫ0 > 0 is small enough. Therefore, (4) is a contradiction, and thus h1 ≡ 0
on a neighborhood of (0, 0) in C2.

Since h1 ≡ 0, it follows from (3) with t = 0 that

Re
[

∞
∑

m,n=0

bmnz
n
2P

′(z2)
]

= 0

for every z2 satisfying |z2| < ǫ0, for some ǫ0 > 0 sufficiently small. Since P
satisfies the condition (I.1), we conclude that bmn = 0 for every m ≥ 0, n ≥ 1.
We now show that bm0 = 0 for everym ∈ N∗. Indeed, suppose otherwise. Then
let m0 be the smallest positive integer such that bm00 6= 0. It follows from (3)
with t = αP (z2) that

Re
(

bm00(iα− 1)m0P ′(z2)/P (z2)
)

is bounded on ∆̃ǫ0 with ǫ0 > 0 small enough for any α ∈ R small enough. By
Lemma 5, this is again impossible.

Altogether, the proof of Theorem 1 is complete. �
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