DOI QR코드

DOI QR Code

DIFFERENTIALS OF THE BICOMPLEX FUNCTIONS FOR EACH CONJUGATIONS BY THE NAIVE APPROACH

  • Kang, Han Ul (Department of Mathematics, Pusan National University) ;
  • Kim, Min Ji (Department of Mathematics, Pusan National University) ;
  • Shon, Kwang Ho (Department of Mathematics, Pusan National University)
  • 투고 : 2017.05.31
  • 심사 : 2017.06.19
  • 발행 : 2017.06.25

초록

In this paper, we aim to compare the differentials with the regularity of the hypercomplex valued functions in Clifford analysis. For three kinds of conjugation of the bicomplex numbers, we define the differentials of the bicomplex number functions by the naive approach. And we investigate some relations of the corresponding Cauchy-Riemann system and the conditions of the differentiable functions in the bicomplex number system.

키워드

참고문헌

  1. H. S. Jung and K. H. Shon, Properties of hyperholomorphic functions on dual ternary numbers, J. Korean Soc. Math. Educ. Ser. B, Pure Appl. Math., 20 (2013), 129-136.
  2. H. S. Jung, S. J. Ha, K. H. Lee, S. M. Lim and K. H. Shon, Structures of hyperholomorphic functions on dual quaternion numbers, Honam Math. J., 35 (2013), 809-817. https://doi.org/10.5831/HMJ.2013.35.4.809
  3. H. U. Kang, S. Jung and K. H. Shon, Regular functions for different kinds of conjugations in the the bicomplex number field, East Asian Math. J., 32 No. 5, (2016), 641-649. https://doi.org/10.7858/eamj.2016.044
  4. J. E. Kim and K. H. Shon, The regularity of functions on dual split quaternions in Clifford analysis, Abstr. Appl. Anal., Art. ID 369430 (2014), 8 pages.
  5. J. E. Kim, S. J. Lim and K. H. Shon, Regular functions with values in ternary number system on the complex Clifford analysis, Abstr. Appl. Anal., Art. ID 136120 (2013), 7 pages.
  6. J. E. Kim, S. J. Lim and K. H. Shon, Regularity of functions on the reduced quaternion field in Clifford analysis, Abstr. Appl. Anal., Art. ID 654798 (2014), 8 pages.
  7. S. J. Lim and K. H. Shon, Split hyperholomorphic function in Cliiford analysis, J. Korea Soc. Math. Ser. B, Pure Appl. Math., 22 (2015), 57-63.
  8. M. E. Luna-Elizarraras and M. Shapiro, A survey on the (hyper-) derivatives in complex, quaternionic and Clifford analysis, Milan J. of Math., 79 (2011), 521-542. https://doi.org/10.1007/s00032-011-0169-0
  9. M. E. Luna-Elizarraras and M. Shapiro, Bicomplex Numbers and their Elementary Functions, CUBO A Mathematical J., 14 (2012), 61-80. https://doi.org/10.4067/S0719-06462012000200004
  10. M. Naser, Hyperholomorphic functions, Siberian Math., 12 (1971), 959-968.
  11. D. Rochon and M. Shapiro, On Algebraic Properties of Bicomplex and Hyperbolic Numbers, Anal. Univ. Oradea, (2004), 28 pages.