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FREDHOLM TOEPLITZ OPERATORS

ON THE PLURIHARMONIC DIRICHLET SPACE

Young Joo Lee∗

Abstract. In this paper we consider Toeplitz operators on the
pluriharmonic Dirichlet space of the unit ball in the n-dimensional
complex space. We then characterize Fredholm Toeplitz operators
and describe the essential spectrum of a Toeplitz operator as a con-
sequence.

1. Introduction

Let B be the unit ball in the complex n-space Cn and V be the
Lebesgue volume measure on Cn normalized so that V (B) = 1. The
Sobolev space S is the completion of the space of all smooth functions
f on B for which

‖f‖ =

{∣∣∣∣∫
B
f dV

∣∣∣∣2 +

∫
B

(
|Rf |2 + |R̃f |2

)
dV

}1/2

<∞

where

Rf(z) =
n∑
i=1

zi
∂f

∂zi
(z), R̃f(z) =

n∑
i=1

zi
∂f

∂zi
(z)

for z = (z1, · · · , zn) ∈ B. Then the Sobolev space S is a Hilbert space
with the inner product

〈f, g〉 =

∫
B
f dV

∫
B
ḡ dV +

∫
B

(
RfRg + R̃fR̃g

)
dV.

The pluriharmonic Dirichlet space Dph is a subspace of S consisting
of all pluriharmonic functions on B. Recall that a twice continuously
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differentiable function u on B is said to be pluriharmonic if the one-
variable function λ 7→ u(a+λb), defined for λ ∈ C such that a+λb ∈ B,
is harmonic for each a ∈ B and b ∈ Cn. Then one can see that the
pluriharmonic Dirichlet space Dph is closed in S . We let Q be the
Hilbert space orthogonal projection from S onto Dph. Put

L 1,∞ =

{
ϕ ∈ S : ϕ,

∂ϕ

∂zj
,
∂ϕ

∂z̄j
∈ L∞, j = 1, · · · , n

}
where the derivatives are taken in the sense of distribution. By Sobolev’s
embedding theorem([1, Theorem 5.4]), we can see that each function in
L 1,∞ can be extended to a continuous function on the closed unit ball
B̄. We will use the same notation between a function in L 1,∞ and its
continuous extension to B̄. For ϕ ∈ L 1,∞, we note that Rϕ, R̃ϕ ∈ L∞.

Given a function u ∈ L 1,∞, the Toeplitz operator Tu with symbol u
is defined on Dph by

Tuf = Q(uf)

for functions f ∈ Dph. Then Tu is a bounded linear operator on Dph;
see Proposition 1 of Section 3.

We let B denote the C∗-algebra consisting of all bounded linear op-
erators on Dph. Also, let K be the algebra of all compact operators on
Dph. An operator L ∈ B is said to be Fredholm if L+K is invertible in
the quotient algebra B/K. Note that L ∈ B is Fredholm if and only if
there exist L1, L2 ∈ B such that L1L − I, LL2 − I ∈ K. See Chapter 6
of [3] for details.

In this paper we study the problem of when a Toeplitz operator is
Fredholm. For Toeplitz operators acting on the Hardy space, Bergman
space or holomorphic Dirichlet space, such problems have been well stud-
ied as in [4], [6], [2] and [5].

We in this paper continue to study the same problem for Toeplitz
operators on the pluriharmonic Dirichlet space Dph. We consider general
symbols in L 1,∞ and characterize Fredholm Toeplitz operators. The
following is the our main theorem.

Main theorem. Let u ∈ L 1,∞. Then Tu is Fredholm on Dph if and
only if u has no zero on the boundary of B.

In Section 2, we collect some preliminary results. In Section 3, we
prove the main theorem and describe the essential spectrum of a Toeplitz
operator as an immediate consequence.
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2. Preliminaries

The Dirichlet space D is a closed subspace of S consisting of all
holomorphic functions in S . We let P be the Hilbert space orthogonal
projection from S onto D . Each point evaluation is easily verified to be
bounded linear functionals on both D and Dph. Hence, for each z ∈ B,
there exist functions Kz ∈ D and Rz ∈ Dph which have the following
reproducing properties:

f(z) = 〈f,Kz〉, u(z) = 〈u,Rz〉

for functions f ∈ D and u ∈ Dph. As is well known, a real-valued
function on B is pluriharmonic if and only if it is the real part of a
holomorphic function on B. Hence every pluriharmonic function on B
can be expressed, uniquely up to an additive constant, as a sum of a
holomorphic function and an antiholomorphic function; see Chapter 4
of [7]. Using this fact, we can see that Dph = D + D . Thus there is a
useful relation between Rz and Kz:

Rz = Kz +Kz − 1

Since Pϕ = 〈ϕ,Kz〉 for z ∈ B, the formula above leads us to the follow-
ing useful connection between P and Q:

(1) Q(ϕ) = P (ϕ) + P (ϕ)− P (ϕ)(0)

for functions ϕ ∈ S .
We let L2 = L2(B, V ) be the usual Lebesgue space and A2 be the well

known Bergman space consisting of all holomorphic functions in L2. Let
Φ be the Bergman projection which is the orthogonal projection from
L2 onto A2 whose its explicit formula can be written as

Φψ(z) =

∫
B
ψ(w)Bz(w) dV (w), z ∈ B

for functions ψ ∈ L2. Here Bz is the well known Bergman kernel given
by

Bz(w) =
1

(1− w · z)n+1
, w ∈ B

where w · z̄ = w1z1 + · · · + wnzn is the Hermitian inner product for
points z, w ∈ Cn. For any multi-index α = (α1, · · · , αn) where each
αk is a nonnegative integer, we will write |α| = α1 + · · · + αn and
α! = α1! · · ·αn!. We will also write

zα = zα1
1 · · · z

αn
n
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for z = (z1, · · · , zn) ∈ B. Note that Rzα = |α|zα for every multi-index
α. Since

Bz(w) =
∑
|α|≥0

(n+ |α|)!
n!α!

zαwα, z, w ∈ B,

we have

Φψ(z) =
∑
|α|≥0

(n+ |α|)!
n!α!

zα
∫
B
wαψ(w) dV (w), z ∈ B(2)

for functions ψ ∈ L2; see Chapter 2 of [8] for details and related facts.
Using Lemma 1.11 of [8], we see that

||zα||2 = |α|2
∫
B
|zα|2 dV (z) =

n!|α|2α!

(n+ |α|)!
for each multi-index α with |α| > 0. Note that the set {zα : |α| ≥ 0}
spans a dense subset of D . Thus it can be easily seen that the kernel
function Kz on D has the following explicit formula

Kz(w) = 1 +
∑
|α|>0

(n+ |α|)!
n!|α|2α!

zαwα

for z, w ∈ B. Since Kz(0) = 1 for all z ∈ B, it follows from the repro-
ducing property that

Pψ(z) =

∫
B
ψ dV +

∑
|α|>0

(n+ |α|)!
n!|α|α!

zα
∫
B
wαRψ(w) dV (w)(3)

for functions ψ ∈ S and points z ∈ B. Combining the above with (2),
we can see

R(Pψ)(z) =
∑
|α|>0

(n+ |α|)!
n!α!

zα
∫
B
wαRψ(w) dV (w)

= Φ (Rψ) (z)− Φ (Rψ) (0), z ∈ B
(4)

for functions ψ ∈ S .
In the following, we use the notation

||f ||2 =

(∫
B
|f |2 dV

) 1
2

for functions f ∈ L2. Note that |f(0)| ≤ ||f ||2 for all f ∈ A2. Also, one
can see that

‖f‖2 ≤ ‖Rf‖2 ≤ ‖f‖(5)

for every f ∈ D . See Chapter 2 of [8] for details.
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We begin with the boundedness of Toeplitz operators.

Proposition 1. For u ∈ L 1,∞, the Toeplitz operator Tu is bounded
on Dph.

Proof. Let ϕ ∈ Dph be arbitrary and write ϕ = f+ḡ for some f, g ∈ D
with f(0) = 0. Note uϕ ∈ S and ||ϕ||2 = ||f ||2 + ||g||2. Hence, by (5)
we see

‖ϕ‖2 ≤ ||f ||2 + ||g||2 ≤ ||f ||+ ||g|| ≤ 2‖ϕ‖.(6)

Hence, by (3),

|P (ūϕ̄)(0)| =
∣∣∣∣∫
B
uϕdV

∣∣∣∣ ≤ ||u||∞||ϕ||2 ≤ 2||u||∞||ϕ||.(7)

Also, by (4) and the L2-boundedness of the Bergman projection Φ, we
see

||P (uϕ)− P (uϕ)(0)|| = ‖R(P (uϕ))‖2
≤ ‖Φ(R(uϕ))‖2 + |Φ (R(uϕ)) (0)|
≤ 2‖Φ(R(uϕ))‖2
≤ 2‖R(uϕ)‖2
= 2‖ϕRu+ uRϕ‖2
≤ 4 (‖Ru‖∞ + ‖u‖∞) ‖ϕ‖

(8)

and similarly

‖R(P (ūϕ̄))‖2 ≤ 4 (‖Rū‖∞ + ‖u‖∞) ‖ϕ‖.

Combining the above with (7), one obtains

||P (ūϕ̄)||2 = |P (ūϕ̄)(0)|2 + ‖R(P (ūϕ̄))‖22 ≤ C1||ϕ||2

for some constant C1 depending only on u. It follows from (1) and (8)
that

‖Tuϕ‖2 = ‖Q(uϕ)‖2

= ||P (uϕ)− P (uϕ)(0)||2 + ||P (ūϕ̄)||2

≤ C‖ϕ‖2

for some constant C depending only on u, which implies the boundedness
of Tu as desired. The proof is complete.
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3. Fredholm Toeplitz operators

In this section, we prove the main theorem and compute the essential
spectrum of a Toeplitz operator as an immediate consequence.

We let D0 be the space of all f ∈ D such that f(0) = 0. Note that
Dph = D0 ⊕D .

Proposition 2. If a sequence uj = fj + gj ∈ D0 + D converges to
0 weakly in Dph, then fj and gj converge to 0 weakly in D . Also, if a
sequence hj ∈ D converges to 0 weakly in D , then hj and h̄j converge
to 0 weakly in Dph.

Proof. Let ϕ ∈ D . Since fj(0) = 0, we first have gj(0) = uj(0) =
〈uj , 1〉 and hence

〈fj , ϕ〉 = 〈uj − gj , ϕ〉 = 〈uj , ϕ〉 − 〈uj , 1〉 ϕ(0)

for each j. So, if uj → 0 weakly in Dph, we have 〈uj , ϕ〉 and 〈uj , 1〉
converge to 0 as n→∞. Hence fj converges to 0 weakly in D . Similarly,
since

〈gj , ϕ〉 = 〈uj − fj , ϕ〉 = 〈uj , ϕ〉 − fj(0)ϕ(0) = 〈uj , ϕ̄〉 → 0

as j →∞, we see gj converges to 0 weakly in D .

To prove the remaining part, let a+ b̄ ∈ Dph = D0 + D . Then

〈hj , a+ b̄〉 = 〈hj , a〉+ hj(0)b(0) = 〈hj , a〉+ 〈hj , 1〉b(0)

for each j. Note a, 1 ∈ D . So, if hj converges to 0 weakly in D , we

see 〈hj , a + b̄〉 → 0 as j → ∞. Hence hj → 0 weakly and then hj → 0
weakly in Dph. This completes the proof.

We let b2 be the pluriharmonic Bergman space consisting of all pluri-
harmonic functions in L2. By (6), we see that the identity operator from
Dph into b2 is bounded. The following lemma shows that it is in fact
compact. Recall that the identity operator from D into A2 is compact;
see [5] for example.

Lemma 3. The identity operator from Dph into b2 is compact.

Proof. Let uj be a sequence converging weakly to 0 in Dph and write

uj = fj + gj ∈ D0 + D . To prove the result, we need to show that
||uj ||2 → 0 as j → ∞. By Proposition 2, fn and gn converge weakly
to 0 in D . Since the identity operator from D into A2 is compact as



Fredholm Toeplitz operators 181

mentioned before, we see that ||fj ||2 and ||gj ||2 converge to 0 as j →∞.
It follows that

||uj ||2 ≤ ||fj ||2 + ||gj ||2 → 0

as j →∞. The proof is complete.

Given u ∈ L 1,∞, the (little) Hankel operator hu : D → D with
symbol u is defined by

hu(f) = P (uf̄)

for functions f ∈ D .
The following shows that the Hankel operator is always compact.

Proposition 4. For u ∈ L 1,∞, the Hankel operator hu is compact
on D .

Proof. Let fj be a sequence converging weakly to 0 on D as j →∞.
Since the identity operator from D into A2 is compact, we have

lim
j→∞

∫
B
|fj |2 dV = 0.(9)

Note that

|P (uf̄j)(0)| =
∣∣∣∣∫
B
uf̄j dV

∣∣∣∣ ≤ ||u||∞||fj ||2
for each j. It follows from (4) and the L2-boundedness of the Bergman
projection Φ that

||hufj ||2 = ||P (uf̄j)||2

= |P (uf̄j)(0)|2 + ||R[P (uf̄j)]||22
= ||u||2∞||fj ||22 + ||Φ[(Ru)f̄j ]− Φ[(Ru)f̄j ](0)||22
≤ ||u||2∞||fj ||22 + 4||Φ[(Ru)f̄j ]||22
≤ ||u||2∞||fj ||22 + 4||(Ru)f̄j ||22
≤ ||u||2∞||fj ||22 + 4||Ru||2∞||fj ||22

for each j. It follows that

||hufj ||2 ≤
(
||u||2∞ + 4||Ru||2∞

)∫
B
|fj |2 dV

for each j. Combining the above with (9), we see ||hufj || → 0 as j →∞,
which implies the compactness of hu as desired. The proof is complete.
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Given u ∈ L 1,∞, the (Dirichlet space) Toeplitz operator tu with sym-
bol u is defined on D by tuf = P (uf) for functions f ∈ D . Then tu is
a bounded linear operator on D ; see [5] for example.

The following lemma shows that there are useful relations between
Toeplitz operators and Hankel operators. The notation L∗ denotes the
adjoint operator of a bounded operator L.

Lemma 5. For u ∈ L 1,∞, the following statements hold for every
f ∈ D .

(a) ||Tuf ||2 = ||tuf ||2 − |〈f, t∗u1〉|2 + ||hūf ||2.
(b) ||Tuf̄ ||2 = ||huf ||2 + ||tūf ||2 − |〈f, t∗ū1〉|2.
(c) ||T ∗uf ||2 = ||t∗uf ||2 − |〈f, tu1〉|2 + ||h∗uf̄ ||2.

Proof. Given F + Ḡ ∈ Dph = D0 + D , we first note that

||F + Ḡ||2 = ||F ||2 + ||G||2

and ||G−G(0)||2 = ||G||2 − |G(0)|2. Fix a function f ∈ D . Since

Tuf = P (uf)− P (uf)(0) + P (uf) = tuf − tuf(0) + hūf

by (1), it follows that

||Tuf ||2 = ||tuf ||2 − |tuf(0)|2 + ||hūf ||2.

Now, (a) follows from the fact that

tuf(0) = 〈tuf, 1〉 = 〈f, t∗u1〉.

By the similar argument, we can prove (b). To prove (c), we first note
that

〈T ∗uf, a+ b̄〉 = 〈t∗uf, a〉+ 〈b, h∗uf〉
for every a+ b̄ ∈ D0 + D . It follows that

T ∗uf(z) = 〈T ∗uf,Rz〉
= 〈T ∗uf,Kz − 1 +Kz〉
= 〈t∗uf,Kz − 1〉+ 〈Kz, h

∗
uf〉

= t∗uf(z)− t∗uf(0) + h∗u(f̄)(z)

for every z ∈ B. Then, (c) follows from the similar argument as in the
proof of (a). This completes the proof.

For u ∈ L 1,∞, we note from the reproducing property

P (uF )(0) = 〈tuF,K0〉 = 〈tuF, 1〉 = 〈F, t∗u1〉
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and hence
P (uF̄ )(0) = P (ūF )(0) = 〈F, t∗ū1〉

for every F ∈ D . Thus, by (1), we have

Tuϕ = P (uf) + P (ūg) + hūf + hug − 〈f, t∗u1〉 − 〈g, t∗ū1〉

= tuf + tūg + hūf + hug − 〈f, t∗u1〉 − 〈g, t∗ū1〉
= Auϕ+Buϕ+ Cuϕ

for functions ϕ = f + ḡ ∈ D0 ⊕D . Here Au, Bu, Cu : D0 ⊕D → Dph are
bounded linear operators defined by

Au(f + ḡ) = tuf + tūg

Bu(f + ḡ) = hūf + hug

Cu(f + ḡ) = −〈f, t∗u1〉 − 〈g, t∗ū1〉
respectively. Thus we have the following decomposition for Tu:

Tu = Au +Bu + Cu.(10)

The following lemma shows that the Fredholm properties of Tu and
Au are equivalent.

Lemma 6. Let u ∈ L 1,∞. Then Tu is Fredholm on Dph if and only
if Au is Fredholm on Dph.

Proof. First we prove that the operators Bu and Cu are compact on
Dph. To do this, let ϕj = fj + gj ∈ D0 + D be a sequence converging
weakly to 0 on Dph. Then, by Proposition 2, fj and gj converge weakly
to 0 on D . Since the operators hu and hū are compact by Lemma 4,
we have ||hūfj || → 0 and ||hugj || → 0 as n → ∞. Thus, the operator
Bu is compact on Dph. Also, the compactness of Cu follows from it’s
definition. Now, decomposition (10) gives the desired result. The proof
is complete.

We say that L ∈ B is left Fredholm if there exists L1 ∈ B such that
L1L− I ∈ K. Also, L ∈ B is called right Fredholm if there exists L2 ∈ B
such that LL2 − I ∈ K. Thus, L is Fredholm if and only if L is left
and right Fredholm. Also, it is known that L is not left(resp. right)
Fredholm if and only if there exists a sequence {fj} of unit vectors for
which fj → 0 weakly and ||Lfj ||(resp. ||L∗fj ||) converges to 0 as j →∞;
see Chapter 6 of [3] for details and related facts.

Now we prove the our main theorem. In the course of the proof of
the main theorem, we will use a characterization of Fredholm Toeplitz
operators on the Dirichlet space D . Given u ∈ L 1,∞, it turns out that
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tu is Fredholm on D if and only if u has no zero on ∂B, the boundary
of B; see [5] for detail.

Proof of the main theorem. First assume Tu is Fredholm on Dph and
suppose u has a zero on ∂B. Then tu is not Fredholm on D . Suppose tu
is not left Fredholm on D . Then, there is a sequence {fj} ∈ D of unit
vectors converging weakly to 0 on D for which ||tufj || → 0 as j → ∞.
Note ||hūfj || → 0 as j → ∞ by Proposition 4. Since {fj} converges
weakly to 0 in D , it follows from Lemma 5(a) that

||Tufj ||2 = ||tufj ||2 − |〈fj , t∗u1〉|2 + ||hūfj ||2 → 0

as j →∞. Since {fj} converges weakly to 0 in Dph by Proposition 2, we
see Tu is not left Fredholm on Dh, which is a contradiction. Now suppose
tu is not right Fredholm on D . As before, there is a sequence {gj} ∈ D
of unit vectors converging weakly to 0 on D for which ||t∗ugj || → 0 as
n → ∞. Note {gj} converges weakly to 0 in D̄ . By Lemma 5(c) and
Lemma 4, we have

||T ∗ugj ||2 = ||t∗ugj ||2 − |〈gj , tu1〉|2 + ||h∗uḡj ||2 → 0

as j →∞. Since {gj} also converges weakly to 0 in Dph by Proposition
2, we see Tu is not right Fredholm on Dph, which is also a contradiction.
Thus u has no zero on ∂B.

Conversely, suppose u has no zero on ∂B and hence tu is Fredholm
on D . Since tu is left Fredholm in particular, there exists a bounded
linear operator S1 on D such that S1tu− I is compact on D . Also, since
ū has no zero on ∂D, by the same reason, there exists a bounded linear
operator S2 on D such that S2tū − I is compact on D . With theses
operators S1 and S2, let us define T : D0 + D → Dph by

T (f + ḡ) = S1(f) + S2(g)

for functions f + ḡ ∈ D0 + D . Then, it is easy to check that T is well
defined and linear. Also, using the boundedness of S1, S2 on D , one can
see that T is also bounded. Recall the operator Au defined by

Au(f + ḡ) = tuf + tūg

for functions f + ḡ ∈ D0 + D . Now, we show TAu − I is compact on
Dph. Let ϕj = fj + ḡj ∈ D0 + D be a sequence converging weakly to 0
on Dph. By a simple manipulation, we can see

(TAu − I)(ϕj) = [S1tu − I](fj) + [S2tū − I](gj) + tufj(0)[S21− S11]

for each j. By Proposition 2, we note that fj and gj converge weakly
to 0 on D . Since S1tu − I and S2tū − I are compact on D , we see
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that [S1tu − I](fj) and [S2tū − I](gj) converge to 0 in D . Also, since
tufj(0) = 〈fj , t∗u1〉 for each j, we have tufj(0) → 0 in D . Hence Au
is left Fredholm on Dph. Also, by a similar argument, we can see that
Au is right Fredholm on Dph and then Au is Fredholm on Dh. Now,
by Lemma 6, we see Tu is Fredholm on Dph, as desired. The proof is
complete.

Recall that the essential spectrum σe(L) of L ∈ B is defined to be the
spectrum of L + K in B/K. As an immediate consequence of the main
theorem, we describe the essential spectrum of a Toeplitz operator on
the pluriharmonic Dirichlet space as shown in the following.

Corollary 7. For u ∈ L 1,∞, we have σe(Tu) = u(∂B).
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