FREDHOLM TOEPLITZ OPERATORS ON THE PLURIHARMONIC DIRICHLET SPACE

Young Joo Lee*

Abstract

In this paper we consider Toeplitz operators on the pluriharmonic Dirichlet space of the unit ball in the n-dimensional complex space. We then characterize Fredholm Toeplitz operators and describe the essential spectrum of a Toeplitz operator as a consequence.

1. Introduction

Let B be the unit ball in the complex n-space \mathbb{C}^{n} and V be the Lebesgue volume measure on \mathbb{C}^{n} normalized so that $V(B)=1$. The Sobolev space \mathscr{S} is the completion of the space of all smooth functions f on B for which

$$
\|f\|=\left\{\left|\int_{B} f d V\right|^{2}+\int_{B}\left(|\mathcal{R} f|^{2}+|\widetilde{\mathcal{R}} f|^{2}\right) d V\right\}^{1 / 2}<\infty
$$

where

$$
\mathcal{R} f(z)=\sum_{i=1}^{n} z_{i} \frac{\partial f}{\partial z_{i}}(z), \quad \widetilde{\mathcal{R}} f(z)=\sum_{i=1}^{n} \overline{z_{i}} \frac{\partial f}{\partial \overline{z_{i}}}(z)
$$

for $z=\left(z_{1}, \cdots, z_{n}\right) \in B$. Then the Sobolev space \mathscr{S} is a Hilbert space with the inner product

$$
\langle f, g\rangle=\int_{B} f d V \int_{B} \bar{g} d V+\int_{B}(\mathcal{R} f \overline{\mathcal{R} g}+\widetilde{\mathcal{R}} f \overline{\widetilde{\mathcal{R}}}) d V .
$$

The pluriharmonic Dirichlet space $\mathscr{D}_{p h}$ is a subspace of \mathscr{S} consisting of all pluriharmonic functions on B. Recall that a twice continuously

[^0]differentiable function u on B is said to be pluriharmonic if the onevariable function $\lambda \mapsto u(a+\lambda b)$, defined for $\lambda \in \mathbb{C}$ such that $a+\lambda b \in B$, is harmonic for each $a \in B$ and $b \in \mathbb{C}^{n}$. Then one can see that the pluriharmonic Dirichlet space $\mathscr{D}_{p h}$ is closed in \mathscr{S}. We let Q be the Hilbert space orthogonal projection from \mathscr{S} onto $\mathscr{D}_{p h}$. Put
$$
\mathscr{L}^{1, \infty}=\left\{\varphi \in \mathscr{S}: \varphi, \frac{\partial \varphi}{\partial z_{j}}, \frac{\partial \varphi}{\partial \bar{z}_{j}} \in L^{\infty}, j=1, \cdots, n\right\}
$$
where the derivatives are taken in the sense of distribution. By Sobolev's embedding theorem([1, Theorem 5.4]), we can see that each function in $\mathscr{L}^{1, \infty}$ can be extended to a continuous function on the closed unit ball \bar{B}. We will use the same notation between a function in $\mathscr{L}^{1, \infty}$ and its continuous extension to \bar{B}. For $\varphi \in \mathscr{L}^{1, \infty}$, we note that $\mathcal{R} \varphi, \widetilde{\mathcal{R}} \varphi \in L^{\infty}$.

Given a function $u \in \mathscr{L}^{1, \infty}$, the Toeplitz operator T_{u} with symbol u is defined on $\mathscr{D}_{p h}$ by

$$
T_{u} f=Q(u f)
$$

for functions $f \in \mathscr{D}_{p h}$. Then T_{u} is a bounded linear operator on $\mathscr{D}_{p h}$; see Proposition 1 of Section 3.

We let \mathcal{B} denote the C^{*}-algebra consisting of all bounded linear operators on $\mathscr{D}_{p h}$. Also, let \mathcal{K} be the algebra of all compact operators on $\mathscr{D}_{p h}$. An operator $L \in \mathcal{B}$ is said to be Fredholm if $L+\mathcal{K}$ is invertible in the quotient algebra $\mathcal{B} / \mathcal{K}$. Note that $L \in \mathcal{B}$ is Fredholm if and only if there exist $L_{1}, L_{2} \in \mathcal{B}$ such that $L_{1} L-I, L L_{2}-I \in \mathcal{K}$. See Chapter 6 of [3] for details.

In this paper we study the problem of when a Toeplitz operator is Fredholm. For Toeplitz operators acting on the Hardy space, Bergman space or holomorphic Dirichlet space, such problems have been well studied as in [4], [6], [2] and [5].

We in this paper continue to study the same problem for Toeplitz operators on the pluriharmonic Dirichlet space $\mathscr{D}_{p h}$. We consider general symbols in $\mathscr{L}^{1, \infty}$ and characterize Fredholm Toeplitz operators. The following is the our main theorem.

Main theorem. Let $u \in \mathscr{L}^{1, \infty}$. Then T_{u} is Fredholm on $\mathscr{D}_{p h}$ if and only if u has no zero on the boundary of B.

In Section 2, we collect some preliminary results. In Section 3, we prove the main theorem and describe the essential spectrum of a Toeplitz operator as an immediate consequence.

2. Preliminaries

The Dirichlet space \mathscr{D} is a closed subspace of \mathscr{S} consisting of all holomorphic functions in \mathscr{S}. We let P be the Hilbert space orthogonal projection from \mathscr{S} onto \mathscr{D}. Each point evaluation is easily verified to be bounded linear functionals on both \mathscr{D} and $\mathscr{D}_{p h}$. Hence, for each $z \in B$, there exist functions $K_{z} \in \mathscr{D}$ and $R_{z} \in \mathscr{D}_{p h}$ which have the following reproducing properties:

$$
f(z)=\left\langle f, K_{z}\right\rangle, \quad u(z)=\left\langle u, R_{z}\right\rangle
$$

for functions $f \in \mathscr{D}$ and $u \in \mathscr{D}_{p h}$. As is well known, a real-valued function on B is pluriharmonic if and only if it is the real part of a holomorphic function on B. Hence every pluriharmonic function on B can be expressed, uniquely up to an additive constant, as a sum of a holomorphic function and an antiholomorphic function; see Chapter 4 of [7]. Using this fact, we can see that $\mathscr{D}_{p h}=\mathscr{D}+\overline{\mathscr{D}}$. Thus there is a useful relation between R_{z} and K_{z} :

$$
R_{z}=K_{z}+\overline{K_{z}}-1
$$

Since $P \varphi=\left\langle\varphi, K_{z}\right\rangle$ for $z \in B$, the formula above leads us to the following useful connection between P and Q :

$$
\begin{equation*}
Q(\varphi)=P(\varphi)+\overline{P(\bar{\varphi})}-P(\varphi)(0) \tag{1}
\end{equation*}
$$

for functions $\varphi \in \mathscr{S}$.
We let $L^{2}=L^{2}(B, V)$ be the usual Lebesgue space and A^{2} be the well known Bergman space consisting of all holomorphic functions in L^{2}. Let Φ be the Bergman projection which is the orthogonal projection from L^{2} onto A^{2} whose its explicit formula can be written as

$$
\Phi \psi(z)=\int_{B} \psi(w) \overline{B_{z}(w)} d V(w), \quad z \in B
$$

for functions $\psi \in L^{2}$. Here B_{z} is the well known Bergman kernel given by

$$
B_{z}(w)=\frac{1}{(1-w \cdot \bar{z})^{n+1}}, \quad w \in B
$$

where $w \cdot \bar{z}=w_{1} \bar{z}_{1}+\cdots+w_{n} \bar{z}_{n}$ is the Hermitian inner product for points $z, w \in \mathbb{C}^{n}$. For any multi-index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ where each α_{k} is a nonnegative integer, we will write $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and $\alpha!=\alpha_{1}!\cdots \alpha_{n}!$. We will also write

$$
z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}
$$

for $z=\left(z_{1}, \cdots, z_{n}\right) \in B$. Note that $\mathcal{R} z^{\alpha}=|\alpha| z^{\alpha}$ for every multi-index α. Since

$$
B_{z}(w)=\sum_{|\alpha| \geq 0} \frac{(n+|\alpha|)!}{n!\alpha!} \frac{z^{\alpha}}{z^{\alpha}} w^{\alpha}, \quad z, w \in B,
$$

we have

$$
\begin{equation*}
\Phi \psi(z)=\sum_{|\alpha| \geq 0} \frac{(n+|\alpha|)!}{n!\alpha!} z^{\alpha} \int_{B} \overline{w^{\alpha}} \psi(w) d V(w), \quad z \in B \tag{2}
\end{equation*}
$$

for functions $\psi \in L^{2}$; see Chapter 2 of [8] for details and related facts.
Using Lemma 1.11 of [8], we see that

$$
\|\left. z^{\alpha}\right|^{2}=|\alpha|^{2} \int_{B}\left|z^{\alpha}\right|^{2} d V(z)=\frac{n!|\alpha|^{2} \alpha!}{(n+|\alpha|)!}
$$

for each multi-index α with $|\alpha|>0$. Note that the set $\left\{z^{\alpha}:|\alpha| \geq 0\right\}$ spans a dense subset of \mathscr{D}. Thus it can be easily seen that the kernel function K_{z} on \mathscr{D} has the following explicit formula

$$
K_{z}(w)=1+\sum_{|\alpha|>0} \frac{(n+|\alpha|)!}{n!|\alpha|^{2} \alpha!} \frac{z^{\alpha}}{} w^{\alpha}
$$

for $z, w \in B$. Since $K_{z}(0)=1$ for all $z \in B$, it follows from the reproducing property that

$$
\begin{equation*}
P \psi(z)=\int_{B} \psi d V+\sum_{|\alpha|>0} \frac{(n+|\alpha|)!}{n!|\alpha| \alpha!} z^{\alpha} \int_{B} \overline{w^{\alpha}} \mathcal{R} \psi(w) d V(w) \tag{3}
\end{equation*}
$$

for functions $\psi \in \mathscr{S}$ and points $z \in B$. Combining the above with (2), we can see

$$
\begin{align*}
\mathcal{R}(P \psi)(z) & =\sum_{|\alpha|>0} \frac{(n+|\alpha|)!}{n!\alpha!} z^{\alpha} \int_{B} \overline{w^{\alpha}} \mathcal{R} \psi(w) d V(w) \tag{4}\\
& =\Phi(\mathcal{R} \psi)(z)-\Phi(\mathcal{R} \psi)(0), \quad z \in B
\end{align*}
$$

for functions $\psi \in \mathscr{S}$.
In the following, we use the notation

$$
\|f\|_{2}=\left(\int_{B}|f|^{2} d V\right)^{\frac{1}{2}}
$$

for functions $f \in L^{2}$. Note that $|f(0)| \leq\|f\|_{2}$ for all $f \in A^{2}$. Also, one can see that

$$
\begin{equation*}
\|f\|_{2} \leq\|\mathcal{R} f\|_{2} \leq\|f\| \tag{5}
\end{equation*}
$$

for every $f \in \mathscr{D}$. See Chapter 2 of [8] for details.

We begin with the boundedness of Toeplitz operators.
Proposition 1. For $u \in \mathscr{L}^{1, \infty}$, the Toeplitz operator T_{u} is bounded on $\mathscr{D}_{p h}$.

Proof. Let $\varphi \in \mathscr{D}_{p h}$ be arbitrary and write $\varphi=f+\bar{g}$ for some $f, g \in \mathscr{D}$ with $f(0)=0$. Note $u \varphi \in \mathscr{S}$ and $\|\varphi\|^{2}=\|f\|^{2}+\|g\|^{2}$. Hence, by (5) we see

$$
\begin{equation*}
\|\varphi\|_{2} \leq\|f\|_{2}+\|g\|_{2} \leq\|f\|+\|g\| \leq 2\|\varphi\| . \tag{6}
\end{equation*}
$$

Hence, by (3),

$$
\begin{equation*}
|P(\bar{u} \bar{\varphi})(0)|=\left|\int_{B} u \varphi d V\right| \leq\|u\|_{\infty}\|\varphi\|_{2} \leq 2\|u\|_{\infty}\|\varphi\| . \tag{7}
\end{equation*}
$$

Also, by (4) and the L^{2}-boundedness of the Bergman projection Φ, we see

$$
\begin{align*}
\|P(u \varphi)-P(u \varphi)(0)\| & =\|\mathcal{R}(P(u \varphi))\|_{2} \\
& \leq\|\Phi(\mathcal{R}(u \varphi))\|_{2}+|\Phi(\mathcal{R}(u \varphi))(0)| \\
& \leq 2\|\Phi(\mathcal{R}(u \varphi))\|_{2} \\
& \leq 2\|\mathcal{R}(u \varphi)\|_{2} \tag{8}\\
& =2\|\varphi \mathcal{R} u+u \mathcal{R} \varphi\|_{2} \\
& \leq 4\left(\|\mathcal{R} u\|_{\infty}+\|u\|_{\infty}\right)\|\varphi\|
\end{align*}
$$

and similarly

$$
\|\mathcal{R}(P(\bar{u} \bar{\varphi}))\|_{2} \leq 4\left(\|\mathcal{R} \bar{u}\|_{\infty}+\|u\|_{\infty}\right)\|\varphi\| .
$$

Combining the above with (7), one obtains

$$
\|P(\bar{u} \bar{\varphi})\|^{2}=|P(\bar{u} \bar{\varphi})(0)|^{2}+\|\mathcal{R}(P(\bar{u} \bar{\varphi}))\|_{2}^{2} \leq C_{1}\|\varphi\|^{2}
$$

for some constant C_{1} depending only on u. It follows from (1) and (8) that

$$
\begin{aligned}
\left\|T_{u} \varphi\right\|^{2} & =\|Q(u \varphi)\|^{2} \\
& =\|P(u \varphi)-P(u \varphi)(0)\|^{2}+\|P(\bar{u} \bar{\varphi})\|^{2} \\
& \leq C\|\varphi\|^{2}
\end{aligned}
$$

for some constant C depending only on u, which implies the boundedness of T_{u} as desired. The proof is complete.

3. Fredholm Toeplitz operators

In this section, we prove the main theorem and compute the essential spectrum of a Toeplitz operator as an immediate consequence.

We let \mathscr{D}_{0} be the space of all $f \in \mathscr{D}$ such that $f(0)=0$. Note that $\mathscr{D}_{p h}=\mathscr{D}_{0} \oplus \overline{\mathscr{D}}$.

Proposition 2. If a sequence $u_{j}=f_{j}+\overline{g_{j}} \in \mathscr{D}_{0}+\overline{\mathscr{D}}$ converges to 0 weakly in $\mathscr{D}_{p h}$, then f_{j} and g_{j} converge to 0 weakly in \mathscr{D}. Also, if a sequence $h_{j} \in \mathscr{D}$ converges to 0 weakly in \mathscr{D}, then h_{j} and \bar{h}_{j} converge to 0 weakly in $\mathscr{D}_{p h}$.

Proof. Let $\varphi \in \mathscr{D}$. Since $f_{j}(0)=0$, we first have $\overline{g_{j}(0)}=u_{j}(0)=$ $\left\langle u_{j}, 1\right\rangle$ and hence

$$
\left\langle f_{j}, \varphi\right\rangle=\left\langle u_{j}-\overline{g_{j}}, \varphi\right\rangle=\left\langle u_{j}, \varphi\right\rangle-\left\langle u_{j}, 1\right\rangle \overline{\varphi(0)}
$$

for each j. So, if $u_{j} \rightarrow 0$ weakly in $\mathscr{D}_{p h}$, we have $\left\langle u_{j}, \varphi\right\rangle$ and $\left\langle u_{j}, 1\right\rangle$ converge to 0 as $n \rightarrow \infty$. Hence f_{j} converges to 0 weakly in \mathscr{D}. Similarly, since

$$
\left\langle g_{j}, \varphi\right\rangle=\left\langle\overline{u_{j}}-\overline{f_{j}}, \varphi\right\rangle=\left\langle\overline{u_{j}}, \varphi\right\rangle-\overline{f_{j}}(0) \overline{\varphi(0)}=\overline{\left\langle u_{j}, \bar{\varphi}\right\rangle} \rightarrow 0
$$

as $j \rightarrow \infty$, we see g_{j} converges to 0 weakly in \mathscr{D}.
To prove the remaining part, let $a+\bar{b} \in \mathscr{D}_{p h}=\mathscr{D}_{0}+\overline{\mathscr{D}}$. Then

$$
\left\langle h_{j}, a+\bar{b}\right\rangle=\left\langle h_{j}, a\right\rangle+h_{j}(0) b(0)=\left\langle h_{j}, a\right\rangle+\left\langle h_{j}, 1\right\rangle b(0)
$$

for each j. Note $a, 1 \in \mathscr{D}$. So, if h_{j} converges to 0 weakly in \mathscr{D}, we see $\left\langle h_{j}, a+\bar{b}\right\rangle \rightarrow 0$ as $j \rightarrow \infty$. Hence $h_{j} \rightarrow 0$ weakly and then $\overline{h_{j}} \rightarrow 0$ weakly in $\mathscr{D}_{p h}$. This completes the proof.

We let b^{2} be the pluriharmonic Bergman space consisting of all pluriharmonic functions in L^{2}. By (6), we see that the identity operator from $\mathscr{D}_{p h}$ into b^{2} is bounded. The following lemma shows that it is in fact compact. Recall that the identity operator from \mathscr{D} into A^{2} is compact; see [5] for example.

Lemma 3. The identity operator from $\mathscr{D}_{p h}$ into b^{2} is compact.
Proof. Let u_{j} be a sequence converging weakly to 0 in $\mathscr{D}_{p h}$ and write $u_{j}=f_{j}+\overline{g_{j}} \in \mathscr{D}_{0}+\overline{\mathscr{D}}$. To prove the result, we need to show that $\left\|u_{j}\right\|_{2} \rightarrow 0$ as $j \rightarrow \infty$. By Proposition 2, f_{n} and g_{n} converge weakly to 0 in \mathscr{D}. Since the identity operator from \mathscr{D} into A^{2} is compact as
mentioned before, we see that $\left\|f_{j}\right\|_{2}$ and $\left\|g_{j}\right\|_{2}$ converge to 0 as $j \rightarrow \infty$. It follows that

$$
\left\|u_{j}\right\|_{2} \leq\left\|f_{j}\right\|_{2}+\left\|g_{j}\right\|_{2} \rightarrow 0
$$

as $j \rightarrow \infty$. The proof is complete.
Given $u \in \mathscr{L}^{1, \infty}$, the (little) Hankel operator $h_{u}: \mathscr{D} \rightarrow \overline{\mathscr{D}}$ with symbol u is defined by

$$
h_{u}(f)=\overline{P(u \bar{f})}
$$

for functions $f \in \mathscr{D}$.
The following shows that the Hankel operator is always compact.
Proposition 4. For $u \in \mathscr{L}^{1, \infty}$, the Hankel operator h_{u} is compact on \mathscr{D}.

Proof. Let f_{j} be a sequence converging weakly to 0 on \mathscr{D} as $j \rightarrow \infty$. Since the identity operator from \mathscr{D} into A^{2} is compact, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{B}\left|f_{j}\right|^{2} d V=0 \tag{9}
\end{equation*}
$$

Note that

$$
\left|P\left(u \bar{f}_{j}\right)(0)\right|=\left|\int_{B} u \bar{f}_{j} d V\right| \leq\|u\|_{\infty}\left\|f_{j}\right\|_{2}
$$

for each j. It follows from (4) and the L^{2}-boundedness of the Bergman projection Φ that

$$
\begin{aligned}
\left\|h_{u} f_{j}\right\|^{2} & =\left\|P\left(u \bar{f}_{j}\right)\right\|^{2} \\
& =\left|P\left(u \bar{f}_{j}\right)(0)\right|^{2}+\left\|\mathcal{R}\left[P\left(u \bar{f}_{j}\right)\right]\right\|_{2}^{2} \\
& =\|u\|_{\infty}^{2}\left\|f_{j}\right\|_{2}^{2}+\left\|\Phi\left[(\mathcal{R} u) \bar{f}_{j}\right]-\Phi\left[(\mathcal{R} u) \bar{f}_{j}\right](0)\right\|_{2}^{2} \\
& \leq\|u\|_{\infty}^{2}\left\|f_{j}\right\|_{2}^{2}+4\left\|\Phi\left[(\mathcal{R} u) \bar{f}_{j}\right]\right\|_{2}^{2} \\
& \leq\|u\|_{\infty}^{2}\left\|f_{j}\right\|_{2}^{2}+4\left\|(\mathcal{R} u) \bar{f}_{j}\right\|_{2}^{2} \\
& \leq\|u\|_{\infty}^{2}\left\|f_{j}\right\|_{2}^{2}+4\|\mathcal{R} u\|_{\infty}^{2}\left\|f_{j}\right\|_{2}^{2}
\end{aligned}
$$

for each j. It follows that

$$
\left\|h_{u} f_{j}\right\|^{2} \leq\left(\|u\|_{\infty}^{2}+4\|\mathcal{R} u\|_{\infty}^{2}\right) \int_{B}\left|f_{j}\right|^{2} d V
$$

for each j. Combining the above with (9), we see $\left\|h_{u} f_{j}\right\| \rightarrow 0$ as $j \rightarrow \infty$, which implies the compactness of h_{u} as desired. The proof is complete.

Given $u \in \mathscr{L}^{1, \infty}$, the (Dirichlet space) Toeplitz operator t_{u} with symbol u is defined on \mathscr{D} by $t_{u} f=P(u f)$ for functions $f \in \mathscr{D}$. Then t_{u} is a bounded linear operator on \mathscr{D}; see [5] for example.

The following lemma shows that there are useful relations between Toeplitz operators and Hankel operators. The notation L^{*} denotes the adjoint operator of a bounded operator L.

Lemma 5. For $u \in \mathscr{L}^{1, \infty}$, the following statements hold for every $f \in \mathscr{D}$.
(a) $\left\|T_{u} f\right\|^{2}=\left\|t_{u} f\right\|^{2}-\left|\left\langle f, t_{u}^{*} 1\right\rangle\right|^{2}+\left\|h_{\bar{u}} f\right\|^{2}$.
(b) $\left\|T_{u} \bar{f}\right\|^{2}=\left\|h_{u} f\right\|^{2}+\left\|t_{\bar{u}} f\right\|^{2}-\left|\left\langle f, t_{\bar{u}}^{*} 1\right\rangle\right|^{2}$.
(c) $\left\|T_{u}^{*} f\right\|^{2}=\left\|t_{u}^{*} f\right\|^{2}-\left|\left\langle f, t_{u} 1\right\rangle\right|^{2}+\left\|h_{u}^{*} \bar{f}\right\|^{2}$.

Proof. Given $F+\bar{G} \in \mathscr{D}_{p h}=\mathscr{D}_{0}+\overline{\mathscr{D}}$, we first note that

$$
\|F+\bar{G}\|^{2}=\|F\|^{2}+\|G\|^{2}
$$

and $\|G-G(0)\|^{2}=\|G\|^{2}-|G(0)|^{2}$. Fix a function $f \in \mathscr{D}$. Since

$$
T_{u} f=P(u f)-P(u f)(0)+\overline{P(\overline{u f})}=t_{u} f-t_{u} f(0)+h_{\bar{u}} f
$$

by (1), it follows that

$$
\left\|T_{u} f\right\|^{2}=\left\|t_{u} f\right\|^{2}-\left|t_{u} f(0)\right|^{2}+\left\|h_{\bar{u}} f\right\|^{2}
$$

Now, (a) follows from the fact that

$$
t_{u} f(0)=\left\langle t_{u} f, 1\right\rangle=\left\langle f, t_{u}^{*} 1\right\rangle
$$

By the similar argument, we can prove (b). To prove (c), we first note that

$$
\left\langle T_{u}^{*} f, a+\bar{b}\right\rangle=\left\langle t_{u}^{*} f, a\right\rangle+\left\langle b, h_{u}^{*} \bar{f}\right\rangle
$$

for every $a+\bar{b} \in \mathscr{D}_{0}+\overline{\mathscr{D}}$. It follows that

$$
\begin{aligned}
T_{u}^{*} f(z) & =\left\langle T_{u}^{*} f, R_{z}\right\rangle \\
& =\left\langle T_{u}^{*} f, K_{z}-1+\overline{K_{z}}\right\rangle \\
& =\left\langle t_{u}^{*} f, K_{z}-1\right\rangle+\left\langle K_{z}, h_{u}^{*} \bar{f}\right\rangle \\
& =t_{u}^{*} f(z)-t_{u}^{*} f(0)+\overline{h_{u}^{*}(\bar{f})(z)}
\end{aligned}
$$

for every $z \in B$. Then, (c) follows from the similar argument as in the proof of (a). This completes the proof.

For $u \in \mathscr{L}^{1, \infty}$, we note from the reproducing property

$$
P(u F)(0)=\left\langle t_{u} F, K_{0}\right\rangle=\left\langle t_{u} F, 1\right\rangle=\left\langle F, t_{u}^{*} 1\right\rangle
$$

and hence

$$
P(u \bar{F})(0)=\overline{P(\bar{u} F)(0)}=\overline{\left\langle F, t_{\bar{u}}^{*} 1\right\rangle}
$$

for every $F \in \mathscr{D}$. Thus, by (1), we have

$$
\begin{aligned}
T_{u} \varphi & =P(u f)+\overline{P(\bar{u} g)}+h_{\bar{u}} f+\overline{h_{u} g}-\left\langle f, t_{u}^{*} 1\right\rangle-\overline{\left\langle g, t_{u}^{*} 1\right\rangle} \\
& =t_{u} f+\overline{t_{\bar{u}} g}+h_{\bar{u}} f+\overline{h_{u} g}-\left\langle f, t_{u}^{*} 1\right\rangle-\overline{\left\langle g, t_{\bar{u}}^{*} 1\right\rangle} \\
& =A_{u} \varphi+B_{u} \varphi+C_{u} \varphi
\end{aligned}
$$

for functions $\varphi=f+\bar{g} \in \mathscr{D}_{0} \oplus \overline{\mathscr{D}}$. Here $A_{u}, B_{u}, C_{u}: \mathscr{D}_{0} \oplus \overline{\mathscr{D}} \rightarrow \mathscr{D}_{p h}$ are bounded linear operators defined by

$$
\begin{aligned}
& A_{u}(f+\bar{g})=t_{u} f+\overline{t_{\bar{u}} g} \\
& B_{u}(f+\bar{g})=h_{\bar{u}} f+h_{u} g \\
& C_{u}(f+\bar{g})=-\left\langle f, t_{u}^{*} 1\right\rangle-\overline{\left\langle g, t_{\bar{u}}^{*} 1\right\rangle}
\end{aligned}
$$

respectively. Thus we have the following decomposition for T_{u} :

$$
\begin{equation*}
T_{u}=A_{u}+B_{u}+C_{u} . \tag{10}
\end{equation*}
$$

The following lemma shows that the Fredholm properties of T_{u} and A_{u} are equivalent.

Lemma 6. Let $u \in \mathscr{L}^{1, \infty}$. Then T_{u} is Fredholm on $\mathscr{D}_{p h}$ if and only if A_{u} is Fredholm on $\mathscr{D}_{p h}$.

Proof. First we prove that the operators B_{u} and C_{u} are compact on $\mathscr{D}_{p h}$. To do this, let $\varphi_{j}=f_{j}+\overline{g_{j}} \in \mathscr{D}_{0}+\overline{\mathscr{D}}$ be a sequence converging weakly to 0 on $\mathscr{D}_{p h}$. Then, by Proposition $2, f_{j}$ and g_{j} converge weakly to 0 on \mathscr{D}. Since the operators h_{u} and $h_{\bar{u}}$ are compact by Lemma 4 , we have $\left\|h_{\bar{u}} f_{j}\right\| \rightarrow 0$ and $\left\|h_{u} g_{j}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Thus, the operator B_{u} is compact on $\mathscr{D}_{p h}$. Also, the compactness of C_{u} follows from it's definition. Now, decomposition (10) gives the desired result. The proof is complete.

We say that $L \in \mathcal{B}$ is left Fredholm if there exists $L_{1} \in \mathcal{B}$ such that $L_{1} L-I \in \mathcal{K}$. Also, $L \in \mathcal{B}$ is called right Fredholm if there exists $L_{2} \in \mathcal{B}$ such that $L L_{2}-I \in \mathcal{K}$. Thus, L is Fredholm if and only if L is left and right Fredholm. Also, it is known that L is not left(resp. right) Fredholm if and only if there exists a sequence $\left\{f_{j}\right\}$ of unit vectors for which $f_{j} \rightarrow 0$ weakly and $\left\|L f_{j}\right\|\left(\right.$ resp. $\left.\left\|L^{*} f_{j}\right\|\right)$ converges to 0 as $j \rightarrow \infty$; see Chapter 6 of [3] for details and related facts.

Now we prove the our main theorem. In the course of the proof of the main theorem, we will use a characterization of Fredholm Toeplitz operators on the Dirichlet space \mathscr{D}. Given $u \in \mathscr{L}^{1, \infty}$, it turns out that
t_{u} is Fredholm on \mathscr{D} if and only if u has no zero on ∂B, the boundary of B; see [5] for detail.

Proof of the main theorem. First assume T_{u} is Fredholm on $\mathscr{D}_{p h}$ and suppose u has a zero on ∂B. Then t_{u} is not Fredholm on \mathscr{D}. Suppose t_{u} is not left Fredholm on \mathscr{D}. Then, there is a sequence $\left\{f_{j}\right\} \in \mathscr{D}$ of unit vectors converging weakly to 0 on \mathscr{D} for which $\left\|t_{u} f_{j}\right\| \rightarrow 0$ as $j \rightarrow \infty$. Note $\left\|h_{\bar{u}} f_{j}\right\| \rightarrow 0$ as $j \rightarrow \infty$ by Proposition 4. Since $\left\{f_{j}\right\}$ converges weakly to 0 in \mathscr{D}, it follows from Lemma $5(\mathrm{a})$ that

$$
\left\|T_{u} f_{j}\right\|^{2}=\left\|t_{u} f_{j}\right\|^{2}-\left|\left\langle f_{j}, t_{u}^{*} 1\right\rangle\right|^{2}+\left\|h_{\bar{u}} f_{j}\right\|^{2} \rightarrow 0
$$

as $j \rightarrow \infty$. Since $\left\{f_{j}\right\}$ converges weakly to 0 in $\mathscr{D}_{p h}$ by Proposition 2 , we see T_{u} is not left Fredholm on \mathscr{D}_{h}, which is a contradiction. Now suppose t_{u} is not right Fredholm on \mathscr{D}. As before, there is a sequence $\left\{g_{j}\right\} \in \mathscr{D}$ of unit vectors converging weakly to 0 on \mathscr{D} for which $\left\|t_{u}^{*} g_{j}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Note $\left\{\overline{g_{j}}\right\}$ converges weakly to 0 in $\overline{\mathscr{D}}$. By Lemma $5(\mathrm{c})$ and Lemma 4, we have

$$
\left\|T_{u}^{*} g_{j}\right\|^{2}=\left\|t_{u}^{*} g_{j}\right\|^{2}-\left|\left\langle g_{j}, t_{u} 1\right\rangle\right|^{2}+\left\|h_{u}^{*} \bar{g}_{j}\right\|^{2} \rightarrow 0
$$

as $j \rightarrow \infty$. Since $\left\{g_{j}\right\}$ also converges weakly to 0 in $\mathscr{D}_{p h}$ by Proposition 2, we see T_{u} is not right Fredholm on $\mathscr{D}_{p h}$, which is also a contradiction. Thus u has no zero on ∂B.

Conversely, suppose u has no zero on ∂B and hence t_{u} is Fredholm on \mathscr{D}. Since t_{u} is left Fredholm in particular, there exists a bounded linear operator S_{1} on \mathscr{D} such that $S_{1} t_{u}-I$ is compact on \mathscr{D}. Also, since \bar{u} has no zero on ∂D, by the same reason, there exists a bounded linear operator S_{2} on \mathscr{D} such that $S_{2} t_{\bar{u}}-I$ is compact on \mathscr{D}. With theses operators S_{1} and S_{2}, let us define $T: \mathscr{D}_{0}+\overline{\mathscr{D}} \rightarrow \mathscr{D}_{p h}$ by

$$
T(f+\bar{g})=S_{1}(f)+\overline{S_{2}(g)}
$$

for functions $f+\bar{g} \in \mathscr{D}_{0}+\overline{\mathscr{D}}$. Then, it is easy to check that T is well defined and linear. Also, using the boundedness of S_{1}, S_{2} on \mathscr{D}, one can see that T is also bounded. Recall the operator A_{u} defined by

$$
A_{u}(f+\bar{g})=t_{u} f+\overline{t_{\bar{u}} g}
$$

for functions $f+\bar{g} \in \mathscr{D}_{0}+\overline{\mathscr{D}}$. Now, we show $T A_{u}-I$ is compact on $\mathscr{D}_{p h}$. Let $\varphi_{j}=f_{j}+\bar{g}_{j} \in \mathscr{D}_{0}+\overline{\mathscr{D}}$ be a sequence converging weakly to 0 on $\mathscr{D}_{p h}$. By a simple manipulation, we can see

$$
\left(T A_{u}-I\right)\left(\varphi_{j}\right)=\left[S_{1} t_{u}-I\right]\left(f_{j}\right)+\overline{\left[S_{2} t_{\bar{u}}-I\right]\left(g_{j}\right)}+t_{u} f_{j}(0)\left[\overline{S_{2} 1}-S_{1} 1\right]
$$

for each j. By Proposition 2, we note that f_{j} and g_{j} converge weakly to 0 on \mathscr{D}. Since $S_{1} t_{u}-I$ and $S_{2} t_{\bar{u}}-I$ are compact on \mathscr{D}, we see
that $\left[S_{1} t_{u}-I\right]\left(f_{j}\right)$ and $\overline{\left[S_{2} t_{\bar{u}}-I\right]\left(g_{j}\right)}$ converge to 0 in \mathscr{D}. Also, since $t_{u} f_{j}(0)=\left\langle f_{j}, t_{u}^{*} 1\right\rangle$ for each j, we have $t_{u} f_{j}(0) \rightarrow 0$ in \mathscr{D}. Hence A_{u} is left Fredholm on $\mathscr{D}_{p h}$. Also, by a similar argument, we can see that A_{u} is right Fredholm on $\mathscr{D}_{p h}$ and then A_{u} is Fredholm on \mathscr{D}_{h}. Now, by Lemma 6, we see T_{u} is Fredholm on $\mathscr{D}_{p h}$, as desired. The proof is complete.

Recall that the essential spectrum $\sigma_{e}(L)$ of $L \in \mathcal{B}$ is defined to be the spectrum of $L+\mathcal{K}$ in $\mathcal{B} / \mathcal{K}$. As an immediate consequence of the main theorem, we describe the essential spectrum of a Toeplitz operator on the pluriharmonic Dirichlet space as shown in the following.

Corollary 7. For $u \in \mathscr{L}^{1, \infty}$, we have $\sigma_{e}\left(T_{u}\right)=u(\partial B)$.

References

[1] R. Adams, Sobolev Spaces, Academic press, New York, 1975.
[2] G. Cao, Fredholm properties of Toeplitz operators on Dirichlet spaces, Pacific J. Math. 188 (1999) 209-223.
[3] J. B. Conway, A Course in Operator Theory, Amer. Math. Soc. Providence, Rhode Island, 1999.
[4] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
[5] Y. J. Lee, Compact sums of Toeplitz products and Toeplitz algebra on the Dirichlet space, Tohoku Math. J., 68 (2016) 253-271.
[6] G. McDonald, Fredholm properties of a class of Toeplitz operators on the ball, Indiana Univ. Math. J., 26 (1977) 567-576.
[7] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^{n}, Springer-Verlag, New York, 1980.
[8] K. Zhu, Space of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.

Young Joo Lee
Department of Mathematics, Chonnam National University, Gwangju 61186, Korea.
E-mail:leeyj@chonnam.ac.kr

[^0]: Received November 21, 2016. Accepted April 6, 2017.
 2010 Mathematics Subject Classification. 47B35, 32A37.
 Key words and phrases. Toeplitz operator, pluriharmonic Dirichlet space, Fredholm operator.
 *Corresponding author

