DOI QR코드

DOI QR Code

Microwave Assisted Extraction, Optimization using Central Composite Design, Quantitative Estimation of Arjunic Acid and Arjunolic Acid using HPTLC and Evaluation of Radical Scavenging Potential of Stem Bark of Terminalia arjuna

  • Khatkar, Sarita (Vaish Institute of Pharmaceutical Education and Research) ;
  • Nanda, Arun (Faculty of Pharmaceutical Sciences, M.D. University) ;
  • Ansari, S.H. (Faculty of Pharmacy, Jamia Hamdard)
  • Received : 2016.09.22
  • Accepted : 2016.11.18
  • Published : 2017.06.30

Abstract

The optimization and microwave assisted extraction of stem bark of Terminalia arjuna, quantitative estimation of the marker compounds arjunic acid and arjunolic acid using HPTLC and the evaluation of free radical scavenging activity has been performed in this study. The central composite design was used for optimization and the values of parameters for optimized batch of microwave assisted extraction were 1000 W (Power), 3 minutes (Time) and 1/120 (Solid/solvent ratio). The solvent system to carry out the HPTLC was toluene: acetic acid: ethyl acetate (5: 5: 0.5) and quantitative estimation was done using standard equations obtained from the marker compounds. The in-vitro free radical scavenging activity was performed spectrophotometrically using ascorbic acid as standard. The value of estimated percentage yield of arjunic acid and arjunolic acid was 1.42% and 1.52% which upon experimentation was obtained as 1.38% and 1.51% respectively. The DPPH assay of the different batches of microwave assisted extraction and marker compounds taken suggested that the marker compounds arjunic acid and the arjunolic acid were responsible for the free radical scavenging activity as the batch having the maximum percentage yield of the marker compounds showed best free radical scavenging effect as compared to standard ascorbic acid. The $IC_{50}$ value of the optimized batch was found to be 24.72 while that of the standard ascorbic acid was 29.83. Hence, the yield of arjunic acid and arjunolic acid has direct correlation with the free radical scavenging activity of stem bark extract of Terminalia arjuna and have potential to serve as active lead compounds for free radical scavenging activity.

Keywords

References

  1. Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K. M.; Latha, L. Y. Afr. J. Tradit. Complement Altern. Med. 2011, 8, 1-4.
  2. Rufino, M. S. M.; Alves, R. E.; de Brito, E. S.; Perez-Jimenez, J.; Saura-Calixto, F.; Mancini-Filho, J. Food Chem. 2010, 121, 996-1002. https://doi.org/10.1016/j.foodchem.2010.01.037
  3. Bandaranayake, W. M. Wetl. Ecol. Manag. 2002, 10, 421-452. https://doi.org/10.1023/A:1021397624349
  4. Vlachojannis, J.; Magora, F.; Chrubasik, S. Phytother. Res. 2011, 25, 1102-1104. https://doi.org/10.1002/ptr.3386
  5. Staba, E. J.; Chung, A. C. Phytochemistry 1981, 20, 2495-2498. https://doi.org/10.1016/0031-9422(81)83079-8
  6. Aslam, J.; Mujib, A.; Nasim, S. A.; Sharma, M. P. Sci. Hortic. 2009, 119, 325-329. https://doi.org/10.1016/j.scienta.2008.08.018
  7. Xie, P.; Chen, S.; Liang, Y. Z.; Wang, X.; Tian, R.; Upton, R. J. Chromatogr. A. 2006, 1112, 171-180. https://doi.org/10.1016/j.chroma.2005.12.091
  8. Pozharitskaya, O. N.; Ivanova, S. A.; Shikov, A. N.; Makarov, V. G. J. Sep. Sci. 2007, 30, 1250-1254. https://doi.org/10.1002/jssc.200600532
  9. Pirisi, F. M.; Cabras, P.; Cao, C. F.; Migliorini, M.; Muggelli, M. J. Agric. Food Chem. 2000, 48, 1191-1196. https://doi.org/10.1021/jf991137f
  10. de la Torre-Carbot, K.; Jauregui, O.; Gimeno, E.; Castellote, A. I.; Lamuela-Raventos, R. M.; Lopez-Sabater, M. C. J. Agric. Food Chem. 2005, 53, 4331-4340. https://doi.org/10.1021/jf0501948
  11. Daferera, D. J.; Ziogas, B. N.; Polissiou, M. G. J. Agric. Food Chem. 2000, 48, 2576-2581. https://doi.org/10.1021/jf990835x
  12. Akowuah, G. A.; Zhari, I.; Norhayati, I.; Mariam, A. J. Food Compos. Anal. 2006, 19, 118-126. https://doi.org/10.1016/j.jfca.2005.04.007
  13. Mallavadhani, U. V.; Sahu, G.; Muralidhar, J. Pharm. Biol. 2002, 40, 508-511. https://doi.org/10.1076/phbi.40.7.508.14685
  14. Khatoon, S.; Srivastava, M.; Rawat, A.; Mehrotra, S. JPC-J. Planar Chromatogr. Mod. TLC. 2005, 18, 364-367. https://doi.org/10.1556/JPC.18.2005.5.5
  15. Kumar, A.; Lakshman, K.; Jayaveera, K. N.; Tripathi, S. M.; Satish, K. V. Jordan J. Pharm. Sci. 2010, 3, 63-68.
  16. Pereira, C. A.; Yariwake, J. H.; Lanças, F. M.; Wauters, J. N.; Tits, M.; Angenot. L. Phytochem. Anal. 2004, 15, 241-248. https://doi.org/10.1002/pca.778
  17. Mehta, M.; Kaur, N.; Bhutani, K. K. Phytochem. Anal. 2001, 12, 91-95. https://doi.org/10.1002/pca.569
  18. Hawthorne, S. B.; Grabanski, C. B.; Martin, E.; Miller, D. J. J. Chromatogr. A. 2000, 892, 421-433. https://doi.org/10.1016/S0021-9673(00)00091-1
  19. De Castro, M. D. L.; Garcýa-Ayuso, L. E. Anal. Chim. Acta 1998, 369, 1-10. https://doi.org/10.1016/S0003-2670(98)00233-5
  20. Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D. Chem. Commun. 1998, 16, 1765-1766.
  21. Khan, M. K.; Abert-Vian, M.; Fabiano-Tixier, A. S.; Dangles, O.; Chemat, F. Food Chem. 2010, 119, 851-858. https://doi.org/10.1016/j.foodchem.2009.08.046
  22. Dai, J.; Mumper, R. J. Molecules 2010, 15, 7313-7352. https://doi.org/10.3390/molecules15107313
  23. Nunez Selles, A. J.; Velez Castro, H. T.; Aguero-Aguero, J.; Gonzalez-Gonzalez, J.; Naddeo, F.; De Simone, F.; Rastrelli, L. J. Agric. Food Chem. 2002, 50, 762-766. https://doi.org/10.1021/jf011064b
  24. Pourmortazavi, S. M.; Hajimirsadeghi, S. S. J. Chromatogr. A 2007, 1163, 2-24. https://doi.org/10.1016/j.chroma.2007.06.021
  25. Routray, W.; Orsat, V. Food Bioprocess Technol. 2012, 5, 409-424. https://doi.org/10.1007/s11947-011-0573-z
  26. Kaufmann, B.; Christen, P. Phytochem. Anal. 2002, 13, 105-113. https://doi.org/10.1002/pca.631
  27. Lu, Y.; Ma, W.; Hu, R.; Dai, X.; Pan, Y. J. Chromatogr. A 2008, 1208, 42-46. https://doi.org/10.1016/j.chroma.2008.08.070
  28. Spigno, G.; De Faveri, D. M. J. Food Eng. 2009, 93, 210-217. https://doi.org/10.1016/j.jfoodeng.2009.01.006
  29. Devgan, M.; Nanda, A.; Ansari, S. H. Pak. J. Pharm. Sci. 2013, 26, 973-976.
  30. Devgun, M.; Nanda, A. R. U. N.; Ansari, S. H. Acta Pol. Pharm. 2012, 69, 475-485.
  31. Devgun, M.; Nanda, A.; Ansari, S. H; Swamy, S. K. Res. J. Pharm. Technol. 2010, 3, 644-649.
  32. Valko, M.; Jomova, K.; Rhodes, C. J.; Kuèa, K.; Musílek, K. Arch. Toxicol. 2016, 90, 1-37. https://doi.org/10.1007/s00204-015-1579-5
  33. Przyklenk, K.; Kloner, R. A. Circ. Res. 1989, 64, 86-96. https://doi.org/10.1161/01.RES.64.1.86
  34. Prasad, K.; Kalra, J. Am. Heart J. 1993, 125, 958-973. https://doi.org/10.1016/0002-8703(93)90102-F
  35. Puthur, J. T. South Indian J. Biol. Sci. 2016, 2, 14-17. https://doi.org/10.22205/sijbs/2016/v2/i1/100335
  36. Galano, A.; Mazzone, G.; Alvarez-Diduk, R.; Marino, T.; Alvarez-Idaboy, J. R.; Russo, N. Annu. Rev. Food Sci. Technol. 2016, 7, 335-352. https://doi.org/10.1146/annurev-food-041715-033206
  37. Fang, Y.; Luo, Y.; Yu, P. J. Renew. Sust. Energ. 2016, 8, 033103. https://doi.org/10.1063/1.4954235
  38. Choi, S.; Kim, J. M.; Shin, G. H.; Jung, T. D.; Oh, J. W.; Choi, S. H.; Cho, B. Y.; Lee, J. H.; Lee, O. H. FASEB J. 2016, 30, 1174-1175.
  39. Martinez-Valverde, I.; Perago, M. J.; Provan, G.; Chesson, A. J. Sci. Food Agr. 2002, 82, 323-330. https://doi.org/10.1002/jsfa.1035
  40. Duthie, G. G.; Duthie, S. J.; Kyle, J. A. Nut. Res. Rev. 2000, 13, 79-106. https://doi.org/10.1079/095442200108729016
  41. Halder, S.; Bharal, N.; Mediratta, P. K.; Kaur, I.; Sharma, K. K. Indian. J. Exp. Biol. 2009, 47, 577-583.
  42. Chaudhari, M. Mengi, S. Phytother. Res., 2006, 20, 799-805. https://doi.org/10.1002/ptr.1857
  43. Chatha, S. A. S.; Hussain, A. I.; Asad, R.; Majeed, M.; Aslam, N. J. Food Process Technol. 2014, 5, 298.
  44. Bachaya, H. A.; Iqbal, Z.; Khan, M. N.; Jabbar, A.; Gilani, A. H.; Din, I. U. Int. J. Agric. Biol. 2009, 11, 273-278.
  45. Sultana, B.; Anwar, F.; Przybylski, R. Food Chem. 2007, 104, 1106-1114. https://doi.org/10.1016/j.foodchem.2007.01.019
  46. Manna, P.; Sinha, M.; Sil, P. C. Arch. Toxicol. 2008, 82, 137-149. https://doi.org/10.1007/s00204-007-0272-8
  47. Elsherbiny, N. M.; Eladl, M. A.; Al-Gayyar, M. M. H. Cytokine. 2016, 77, 26-34. https://doi.org/10.1016/j.cyto.2015.10.010
  48. Sumitra, M.; Manikandan, P.; Kumar, D. A.; Arutselvan, N.; Balakrishna, K.; Manohar, B. M.; Puvanakrishnan, R. Mol. Cell. Biochem. 2001, 224, 135-142. https://doi.org/10.1023/A:1011927812753
  49. Sun, F. Y.; Chen, X. P.; Wang, J. H.; Qin, H. L.; Yang, S. R.; Du, G. H. Am. J. Chin. Med. 2008, 36, 197-207. https://doi.org/10.1142/S0192415X08005709
  50. Pharmacopoeia of India. Herbs and Herbal Monographs: Indian Pharmacopoeial Commission; Ministry of Health and Family Welfare: India, 2010, pp 8-9.
  51. Bondet, V.; Brand-Williams, W.; Berset, C. LWT-Food Sci. Tech. 1997, 30, 609-615. https://doi.org/10.1006/fstl.1997.0240
  52. Novilla, A.; Nawawi, A.; Sugihartina, G.; Widowati, W. Cukurova Med. J. 2014, 39, 224-233.

Cited by

  1. Comparative Evaluation of Conventional and Novel Extracts of Stem Bark of Terminalia arjuna for Antihypertensive Activity in BSO Induced Oxidative Stress based Rat Model vol.20, pp.2, 2019, https://doi.org/10.2174/1389201020666190222185209