DOI QR코드

DOI QR Code

Hydrodynamics of single-deadrise hulls and their catamaran configurations

  • Bari, Ghazi S. (School of Mechanical and Materials Engineering, Washington State University) ;
  • Matveev, Konstantin I. (School of Mechanical and Materials Engineering, Washington State University)
  • Received : 2016.09.12
  • Accepted : 2016.11.08
  • Published : 2017.05.31

Abstract

Asymmetric planing hulls are often used on high-speed catamarans. In this study, a linearized potential-flow method is applied for modeling steady hydrodynamics of single asymmetric hulls and their catamaran setups. Numerical results are validated with available experimental data and empirical correlations. Parametric calculation results are presented for the lift coefficient and the center of pressure for variable hull geometry, spacings, and speed regimes. The lift coefficient is found to increase at smaller hull spacings and decrease at higher Froude numbers and higher deadrise angles.

Keywords

References

  1. Bari, G.S., Matveev, K.I., 2016. Hydrodynamic modeling of planing catamarans with symmetric hulls. Ocean Eng. 115, 60-66. https://doi.org/10.1016/j.oceaneng.2016.01.035
  2. Benedict, K., Kornev, N., Meyer, M., Ebert, J., 2002. Complex mathematical model of the WIG motion including the take-off mode. Ocean Eng. 29, 315-357. https://doi.org/10.1016/S0029-8018(01)00002-6
  3. Bertram, V., 2000. Practical Ship Hydrodynamics. Butterworth-Heinemann, Oxford.
  4. Doctors, L.J., 1974. Representation of planing surfaces by finite pressure elements. In: 5th Australian Conference on Hydraulics and Fluid Mechanics, Christchurch, New Zealand.
  5. Epstein, L.A., 1969. Determination of the depression behind a finite-span underwater wing and gliding flat plate. In: Problems of Hydrodynamics and Continuum Mechanics. SIAM, Philadelphia, PA, pp. 220-230.
  6. Judge, C.Q., 2013. Comparisons between prediction and experiment for lift force and heel moment for a planing hull. J. Ship Des. Prod. 29(1), 36-46. https://doi.org/10.5957/JSPD.29.1.120040
  7. Kandasamy, M., Ooi, S.K., Carrica, P., Stern, F., Campana, E.F., Peri, D., Osborne, P., Cote, J., Macdonald, N., de Waal, N., 2011. CFD validation studies for a high-speed foil-assisted semi-planing catamaran. J. Mar. Sci. Technol. 16(2), 157-167. https://doi.org/10.1007/s00773-011-0120-7
  8. Knapp, R.T., Daily, J.W., Hammit, F.G., 1970. Cavitation. McGraw-Hill, New York.
  9. Lai, C., Troesch, A.W., 1996. A vortex lattice method for high-speed planing. Int. J. Numer. Methods Fluids 22, 495-513. https://doi.org/10.1002/(SICI)1097-0363(19960330)22:6<495::AID-FLD353>3.0.CO;2-R
  10. Lee, T.-S., 1982. Interference factor for catamaran planing hulls. AIAA J. 20(10), 1461-1462. https://doi.org/10.2514/3.51207
  11. Liu, C.Y., Wang, C.T., 1979. Interference effects of catamaran planing hulls. J. Hydronautics 13(1), 31-32. https://doi.org/10.2514/3.63150
  12. Matveev, K.I., 2003. On the limiting parameters of artificial cavitation. Ocean Eng. 30(9), 1179-1190. https://doi.org/10.1016/S0029-8018(02)00103-8
  13. Matveev, K.I., Ockfen, A., 2009. Modeling of hard-chine hulls in transitional and early planing regimes by hydrodynamic point sources. Int. Shipbuild. Prog. 56, 1-13.
  14. Matveev, K.I., Miller, M.J., 2011. Air cavity with variable length under model hull. J. Eng. Marit. Environ. 225(2), 161-169.
  15. Matveev, K.I., 2014a. Hydrodynamic modeling of planing hulls with twist and negative deadrise. Ocean Eng. 82, 14-19. https://doi.org/10.1016/j.oceaneng.2014.02.021
  16. Matveev, K.I., 2014b. Modeling of finite-span ram wings moving above water at finite Froude numbers. J. Ship Res. 58(3), 146-156. https://doi.org/10.5957/JOSR.58.3.130046
  17. Migeotte, G., 2002. Design and Optimization of Hydrofoil-assisted Catamarans (Ph.D. thesis). University of Stellenbosch, Stellenbosch, South Africa.
  18. Morabito, M.G., 2011. Experimental investigation of the lift and interference of asymmetric planing catamaran demi-hulls. In: 11th International Conference on Fast Sea Transportation. Hawaii, USA, Honolulu.
  19. Payne, P.R., 1984. On the shape of the wake behind a planing boat. Ocean Eng. 11(5), 513-524. https://doi.org/10.1016/0029-8018(84)90039-8
  20. Payne, P.R., 1988. Design of High-Speed Boats: Planing. Fishergate, Annapolis, MD.
  21. Savitsky, D., Dingee, D., 1954. Some Interference Effects between Two Flat Surfaces Planing Parallel to Each Other at High Speed. Davidson Laboratory Technical Note No. 247.
  22. Savitsky, D., Prowse, R.E., Lueders, D.H., 1958. High-speed Hydrodynamic Characteristics of a Flat Plate and 20 Dead-rise Surface in Unsymmetrical Planing Conditions. NACA Technical Note 4187.
  23. Savitsky, D., 1964. Hydrodynamic design of planing hulls. Mar. Technol. 1, 71-95.
  24. Yousefi, R., Shafaghat, R., Shakeri, M., 2013. Hydrodynamic analysis techniques for high-speed planing hulls. Appl. Ocean Res. 42, 105-113. https://doi.org/10.1016/j.apor.2013.05.004
  25. Yousefi, R., Shafaghat, R., Shakeri, M., 2014. High-speed planing hull drag reduction using tunnels. Ocean. Eng. 84, 54-60. https://doi.org/10.1016/j.oceaneng.2014.03.033
  26. Zhou, Z., 2003. A Theory and Analysis of Planing Catamarans in Calm and Rough Water (Ph.D. thesis). University of New Orleans.

Cited by

  1. On the scale effects of resistance model tests of high-speed monohulls vol.41, pp.4, 2017, https://doi.org/10.1007/s40430-019-1695-x
  2. A new phenomenon in interference effect on catamaran dynamic response vol.190, pp.None, 2017, https://doi.org/10.1016/j.ijmecsci.2020.106041