DOI QR코드

DOI QR Code

선택적 레이저 용융공정을 이용한 316L 스테인리스강 분말 3차원 조형체의 미세조직 및 경도 연구

Study on Microstructures and Hardness of STS316L Fabricated by Selective Laser Melting

  • 신기훈 (한국기계연구원 부설 재료연구소) ;
  • 최준필 ;
  • 김경태 (한국기계연구원 부설 재료연구소) ;
  • 김병기 (울산대학교 첨단소재공학부) ;
  • 유지훈 (한국기계연구원 부설 재료연구소)
  • Shin, Gi Hun (Powder Technology Department, Korea Institute of Materials Science (KIMS)) ;
  • Choi, Joon Phil (Department of Mining and Materials Engineering, McGill University) ;
  • Kim, Kyung Tae (Powder Technology Department, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Byoung Kee (Department of Materials Science and Engineering, University of Ulsan) ;
  • Yu, Ji Hun (Powder Technology Department, Korea Institute of Materials Science (KIMS))
  • 투고 : 2017.05.16
  • 심사 : 2017.06.13
  • 발행 : 2017.06.28

초록

In this study, STS316L powders prepared by gas atomization are used to manufacture bulk structures with dimensions of $10{\times}10{\times}10mm^3$ using selective laser melting (SLM). The microstructures and hardness of the fabricated 316L stainless steel has been investigated with the laser beam overlap varied from 10% to 70%. The microstructures of the fabricated STS316L samples show a decrease in the balling and satellite of powders introducing defect in the bulk samples and the porosity caused by the gap between the molten metal pools disappearing as the overlap ratio increases, whereas a low overlap ratio results in significant balling and a large amount of isolated powders due to the increased gap between the melt pools. Furthermore, the highest value in Vickers hardness is obtained for the sample fabricated by 30% overlapped laser beams. These results show that the overlap ratio of laser beams in the SLM process should be considered as an important process parameter.

키워드

참고문헌

  1. Y. Tang, H. T Loh, Y. S Wong, J. Y. H Fuh, L. Lu and X. Wang: J. Mater. Process. Technol., 140 (2003) 368. https://doi.org/10.1016/S0924-0136(03)00766-0
  2. J. J Lewandowski and M. Seifi: Annu. Rev. Mater. Res., 46 (2016) 151. https://doi.org/10.1146/annurev-matsci-070115-032024
  3. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J. P Kruth: Acta Mater., 58 (2010) 3303. https://doi.org/10.1016/j.actamat.2010.02.004
  4. H. Attar, K. G. Prashanth, A. K. Chaubey, M. Calin, L. C. Zhang, S. Scudino and J. Eckert: Mater. Lett., 142 (2015) 38. https://doi.org/10.1016/j.matlet.2014.11.156
  5. T. Trosch, J. StroBner, R. Volkl and U. Glatzel: Mater. Lett., 164 (2016) 428. https://doi.org/10.1016/j.matlet.2015.10.136
  6. B. Song, S. Dong, B. Zhang, H. Liao and C. Coddet: Mater. Des., 35 (2012) 120. https://doi.org/10.1016/j.matdes.2011.09.051
  7. C. Qiu, C. Panwisawas, M. Ward, H. C. Basoalto, J. W. Brooks and M. M. Attallah: Acta Mater., 96 (2015) 72. https://doi.org/10.1016/j.actamat.2015.06.004
  8. I. Yadroitsev, A. Gusarov, I. Yadroitsava and I. Smurov: J. Mater. Process. Technol., 210 (2010) 1624. https://doi.org/10.1016/j.jmatprotec.2010.05.010
  9. I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson and I. Smurov: J. Mater. Process. Technol., 213 (2013) 606. https://doi.org/10.1016/j.jmatprotec.2012.11.014
  10. R. Li, J. Liu, Y. Shi, L. Wang and W. Jiang: Int. J. Adv. Manuf. Technol., 59 (2012) 1025. https://doi.org/10.1007/s00170-011-3566-1
  11. D. Wang, C. Song, Y. Yang and Y. Bai: Mater. Des., 100 (2016) 291. https://doi.org/10.1016/j.matdes.2016.03.111