DOI QR코드

DOI QR Code

GRADED INTEGRAL DOMAINS AND NAGATA RINGS, II

  • Chang, Gyu Whan (Department of Mathematics Education Incheon National University)
  • Received : 2017.03.07
  • Accepted : 2017.06.01
  • Published : 2017.06.30

Abstract

Let D be an integral domain with quotient field K, X be an indeterminate over D, K[X] be the polynomial ring over K, and $R=\{f{\in}K[X]{\mid}f(0){\in}D\}$; so R is a subring of K[X] containing D[X]. For $f=a_0+a_1X+{\cdots}+a_nX^n{\in}R$, let C(f) be the ideal of R generated by $a_0$, $a_1X$, ${\ldots}$, $a_nX^n$ and $N(H)=\{g{\in}R{\mid}C(g)_{\upsilon}=R\}$. In this paper, we study two rings $R_{N(H)}$ and $Kr(R,{\upsilon})=\{{\frac{f}{g}}{\mid}f,g{\in}R,\;g{\neq}0,{\text{ and }}C(f){\subseteq}C(g)_{\upsilon}\}$. We then use these two rings to give some examples which show that the results of [4] are the best generalizations of Nagata rings and Kronecker function rings to graded integral domains.

Keywords

References

  1. D.D. Anderson, Some remarks on the ring R(X), Comment. Math. Univ. St. Paul. 26 (1977), 137-140.
  2. D.D. Anderson and D.F. Anderson, Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), 549-569. https://doi.org/10.1016/0021-8693(82)90232-0
  3. D.F. Anderson and G.W. Chang, Homogeneous splitting sets of a graded integral domain, J. Algebra 288 (2005), 527-544. https://doi.org/10.1016/j.jalgebra.2005.03.007
  4. D.F. Anderson and G.W. Chang, Graded integral domains and Nagata rings, J. Algebra 387 (2013), 169-184. https://doi.org/10.1016/j.jalgebra.2013.04.021
  5. J.T. Arnold, On the ideal theory of the Kronecker function ring and the domain D(X), Canad. J. Math. 21 (1969), 558-563. https://doi.org/10.4153/CJM-1969-063-4
  6. G.W. Chang, Prufer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), 309-319. https://doi.org/10.1016/j.jalgebra.2007.10.010
  7. L.G. Chouinard II, Krull semigroups and divisor class groups, Canad. J. Math. 33 (1981), 1459-1468. https://doi.org/10.4153/CJM-1981-112-x
  8. D. Costa, J. Mott, and M. Zafrullah, The construction D+XDS[X], J. Algebra 53 (1978), 423-439. https://doi.org/10.1016/0021-8693(78)90289-2
  9. F. Decruenaere and E. Jespers, Prufer domains and graded rings, J. Algebra 53 (1992), 308-320.
  10. M. Fontana and K.A. Loper, A historical overview of Kronecker function rings, Nagata rings, and related star and semistar operations, in: J.W. Brewer, S. Glaz, W.J. Heinzer, B.M. Olberding (Eds.), Multiplicative Ideal Theory in Commu-tative Algebra. A Tribute to the Work of Robert Gilmer, Springer, 2006, pp. 169-187.
  11. R. Gilmer, An embedding theorem for HCF-rings, Proc. Cambridge Philos. Soc. 68 (1970), 583-587. https://doi.org/10.1017/S0305004100076568
  12. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
  13. B.G. Kang, Prufer v-multiplication domains and the ring ${R[X]_N}_v$, J. Algebra 123 (1989), 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  14. D.G. Northcott, A generalization of a theorem on the content of polynomials, Proc. Cambridge Philos. Soc. 55 (1959), 282-288. https://doi.org/10.1017/S030500410003406X
  15. D.G. Northcott, Lessons on Rings, Modules, and Multiplicities, Cambridge Univ. Press, Cambridge, 1968.
  16. P. Sahandi, Characterizations of graded Prufer *-multiplication domain, Korean J. Math. 22 (2014), 181-206. https://doi.org/10.11568/kjm.2014.22.1.181

Cited by

  1. GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS vol.54, pp.6, 2017, https://doi.org/10.4134/jkms.j160625
  2. Graded Prüfer domains vol.46, pp.2, 2018, https://doi.org/10.1080/00927872.2017.1327595
  3. Graded integral domains which are UMT-domains vol.46, pp.6, 2018, https://doi.org/10.1080/00927872.2017.1399406
  4. Graded integral domains in which each nonzero homogeneous $ t$ -ideal is divisorial vol.18, pp.1, 2017, https://doi.org/10.1142/s021949881950018x