References
- Abeydeera LR, Wang WH, Prather RS, Day BN. Effect of incubation temperature on in vitro maturation of porcine oocytes: nuclear maturation, fertilisation and developmental competence. Zygote 2001, 9, 331-337. https://doi.org/10.1017/S0967199401001381
- Boveris A, Cadenas E, Chance B. Ultraweak chemiluminescence: a sensitive assay for oxidative radical reactions. Fed Proc 1981, 40, 195-198.
- Brad AM, Bormann CL, Swain JE, Durkin RE, Johnson AE, Clifford AL, Krisher RL. Glutathione and adenosine triphosphate content of in vivo and in vitro matured porcine oocytes. Mol Reprod Dev 2003, 64, 492-498. https://doi.org/10.1002/mrd.10254
- Cifra M, Fields JZ, Farhadi A. Electromagnetic cellular interactions. Prog Biophys Mol Biol 2011, 105, 223-246. https://doi.org/10.1016/j.pbiomolbio.2010.07.003
- Dai J, Wu C, Muneri CW, Niu Y, Zhang S, Rui R, Zhang D. Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability. Cryobiology 2015, 71, 291-298. https://doi.org/10.1016/j.cryobiol.2015.08.002
- de Matos DG, Furnus CC, Moses DF. Glutathione synthesis during in vitro maturation of bovine oocytes: role of cumulus cells. Biol Reprod 1997, 57, 1420-1425. https://doi.org/10.1095/biolreprod57.6.1420
- Gardner DK. Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology 1998, 49, 83-102. https://doi.org/10.1016/S0093-691X(97)00404-4
- King N, Korolchuk S, McGivan J, Suleiman MS. A new method of quantifying glutathione levels in freshly isolated single superfused rat cardiomyocytes. J Pharmacol Toxicol Methods 2004, 50, 215-222. https://doi.org/10.1016/j.vascn.2004.05.003
- Kobayashi M, Kikuchi D, Okamura H. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm. PLoS One 2009, 4, e6256. https://doi.org/10.1371/journal.pone.0006256
- Kobayashi M, Takeda M, Sato T, Yamazaki Y, Kaneko K, Ito K, Kato H, Inaba H. In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated with cerebral energy metabolism and oxidative stress. Neurosci Res 1999, 34, 103-113. https://doi.org/10.1016/S0168-0102(99)00040-1
- Lee J, You J, Lee GS, Hyun SH, Lee E. Pig oocytes with a large perivitelline space matured in vitro show greater developmental competence after parthenogenesis and somatic cell nuclear transfer. Mol Reprod Dev 2013, 80, 753-762.
-
Lim JM, Reggio BC, Godke RA, Hansel W. Development of in-vitro-derived bovine embryos cultured in 5%
$CO_2$ in air or in 5%$O_2$ , 5%$CO_2$ and 90%$N_2$ . Hum Reprod 1999, 14, 458-464. https://doi.org/10.1093/humrep/14.2.458 - Maccarrone M, Salucci ML, Melino G, Rosato N, Finazzi-Agro A. The early phase of apoptosis in human neuroblastoma CHP100 cells is characterized by lipoxygenase-dependent ultraweak light emission. Biochem Biophys Res Commun 1999, 265, 758-762. https://doi.org/10.1006/bbrc.1999.1744
- Nagashima H, Grupen CG, Ashman RJ, Nottle MB. Developmental competence of in vivo and in vitro matured porcine oocytes after subzonal sperm injection. Mol Reprod Dev 1996, 45, 359-363. https://doi.org/10.1002/(SICI)1098-2795(199611)45:3<359::AID-MRD13>3.0.CO;2-U
- Popp FA. Properties of biophotons and their theoretical implications. Indian J Exp Biol 2003, 41, 391-402.
- Prasad A, Rossi C, Lamponi S, Pospisil P, Foletti A. New perspective in cell communication: potential role of ultraweak photon emission. J Photochem Photobiol B 2014, 139, 47-53. https://doi.org/10.1016/j.jphotobiol.2014.03.004
- Rahnama M, Tuszynski JA, Bokkon I, Cifra M, Sardar P, Salari V. Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. J Integr Neurosci 2011, 10, 65-88. https://doi.org/10.1142/S0219635211002622
- Rastogi A, Pospisil P. Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells. Plant Physiol Biochem 2010, 48, 117-123. https://doi.org/10.1016/j.plaphy.2009.12.011
- Rizzo NR, Hank NC, Zhang J. Detecting presence of cardiovascular disease through mitochondria respiration as depicted through biophotonic emission. Redox Biol 2016, 8, 11-17. https://doi.org/10.1016/j.redox.2015.11.014
- Sakatani M, Suda I, Oki T, Kobayashi S, Kobayashi S, Takahashi M. Effects of purple sweet potato anthocyanins on development and intracellular redox status of bovine preimplantation embryos exposed to heat shock. J Reprod Dev 2007, 53, 605-614. https://doi.org/10.1262/jrd.18124
- Song K, Hyun SH, Shin T, Lee E. Post-activation treatment with demecolcine improves development of somatic cell nuclear transfer embryos in pigs by modifying the remodeling of donor nuclei. Mol Reprod Dev 2009, 76, 611-619. https://doi.org/10.1002/mrd.20989
- Sun Y, Wang C, Dai J. Biophotons as neural communication signals demonstrated by in situ biophoton autography. Photochem Photobiol Sci 2010, 9, 315-322. https://doi.org/10.1039/b9pp00125e
- Yoshioka K, Suzuki C, Tanaka A, Anas IM, Iwamura S. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol Reprod 2002, 66, 112-119. https://doi.org/10.1095/biolreprod66.1.112
- You J, Lee J, Hyun SH, Lee E. L-carnitine treatment during oocyte maturation improves in vitro development of cloned pig embryos by influencing intracellular glutathione synthesis and embryonic gene expression. Theriogenology 2012, 78, 235-243. https://doi.org/10.1016/j.theriogenology.2012.02.027