DOI QR코드

DOI QR Code

Comparison of Fat Content and Fatty Acid Composition in Different Parts of Korean Beef and Pork

한우육 및 돈육의 부위별 지방 함량 및 지방산 조성 비교

  • Jang, Hye-Lim (Food Analysis Research Center, Suwon Women's University) ;
  • Park, Seo-Yeon (Food Analysis Research Center, Suwon Women's University) ;
  • Lee, Jong-Hun (Food Analysis Research Center, Suwon Women's University) ;
  • Hwang, Myung-Jin (Food Analysis Research Center, Suwon Women's University) ;
  • Choi, Youngmin (Functional Food & Nutrition Division, National Institute Academy of Agricultural Science, RDA) ;
  • Kim, Se-Na (Functional Food & Nutrition Division, National Institute Academy of Agricultural Science, RDA) ;
  • Kim, Jin-Hyoung (Animal Products Utilization Division, National Institute of Animal Science, RDA) ;
  • Hwang, Jinbong (Department of Food Analysis, Korea Food Research Institute) ;
  • Seo, Dongwon (Department of Food Analysis, Korea Food Research Institute) ;
  • Nam, Jin-Sik (Food Analysis Research Center, Suwon Women's University)
  • 장혜림 (수원여자대학교 식품분석연구센터) ;
  • 박서연 (수원여자대학교 식품분석연구센터) ;
  • 이종헌 (수원여자대학교 식품분석연구센터) ;
  • 황명진 (수원여자대학교 식품분석연구센터) ;
  • 최용민 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 김세나 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 김진형 (농촌진흥청 국립축산과학원 축산물이용과) ;
  • 황진봉 (한국식품연구원 식품분석센터) ;
  • 서동원 (한국식품연구원 식품분석센터) ;
  • 남진식 (수원여자대학교 식품분석연구센터)
  • Received : 2017.03.28
  • Accepted : 2017.04.21
  • Published : 2017.06.30

Abstract

In this study, the fat contents and fatty acid compositions of Korean beef (tenderloin, loin, strip loin, chuck roll, foreshank, top blade, top round, brisket point, center of heel, and ribs) and pork (tenderloin, loin, shoulder loin, foreshank, jowls, ham, eye of round, belly, skirt meat, and ribs) parts were investigated. The fat contents of Korean beef ranged from 5.25% (top round) to 35.94% (brisket point). The major fatty acids were palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1, n-9); especially, oleic acid was the most abundant. Loin had similar fat content as ribs, but there were some differences in fatty acid composition. Linolenic acid (C18:3, n-3) and linoleic acid (C18:2, n-6) were the most abundant fatty acids in strip loin and ribs (38.63 mg/100 g and 564.71 mg/100 g, respectively). Arachidonic acid (C20:4, n-6) was only found in strip loin, top blade, and ribs, and its amounts were in the following order: ribs (2.50 mg/100 g)> strip loin (1.33 mg/100 g)> top blade (1.19 mg/100 g). Total trans-fatty acid (TFA) content of top round was the lowest among all parts, and the ratio of unsaturated fatty acid (UFA) was the highest in foreshank. The fat contents of pork ranged from 4.16% (tenderloin) to 18.47% (belly), but there was no significant difference in fat content between tenderloin, loin, foreshank, ham, and eye of round. The major fatty acids were palmitic acid, stearic acid, oleic acid, and linoleic acid, and their amounts were in the following order: oleic> palmitic> linoleic> stearic acid. Docosahexaenoic acid (C22:6, n-3) was only detected in belly, and the TFA content of belly was the highest. The ratio of UFA was highest in ham. These findings will be useful in the development of standardization data on fatty acid composition in different parts of Korean beef and pork.

본 연구에서는 우리나라 주요 식육인 한우육 10부위(안심살, 등심살, 채끝살, 목심살, 앞다리살, 부채살, 우둔살, 차돌박이, 아롱사태, 갈비살)와 돈육 10부위(안심살, 등심살, 목심살, 앞사태살, 항정살, 뒷사태살, 홍두깨살, 삼겹살, 갈매기살, 갈비살)의 지방 및 지방산 함량을 측정하여 부위에 따른 차이를 비교 평가함으로써 각종 부위별 지방 및 지방산 조성에 대한 정보를 제공하고자 하였다. 한우육의 지방 함량은 5.25~35.94%로 우둔살이 가장 낮은 함량을, 차돌박이가 가장 높은 함량을 보였다. 포화지방산인 palmitic acid(C16:0)와 stearic acid(C18:0), 단일불포화지방산인 oleic acid(C18:1, n-9)가 주요 지방산인 것으로 확인되었으며, 특히 oleic acid가 지방산 중 가장 높은 함량을 차지하였다. 가장 유사한 지방 함량을 보인 부위는 등심살과 갈비살이었으나 지방산 함량에는 유의적인 차이를 보였다(P<0.05). 채끝살에는 오메가-3 지방산인 linolenic acid(C18:3, n-3)가 100 g당 38.63 mg이, 갈비살에는 오메가-6 지방산인 linoleic acid(C18:2, n-6)가 100 g당 564.71 mg이 함유되어 있어 부위 중 유의적으로 높았다(P<0.05). 채끝살, 부채살 및 갈비살에는 다른 부위에 검출되지 않은 arachidonic acid(C20:4, n-6)가 존재하였으며, 그 함량은 갈비살(2.50 mg/100 g)> 채끝살(1.33 mg/100 g)> 부채살(1.19 mg/100 g)의 순서로 확인되었다. 우둔살의 트랜스지방산 함량은 다른 부위에 비해 현저히 낮은 것으로 측정되었으며(P<0.05), 총 포화지방산에 대한 총 불포화지방산의 비율은 차돌박이($1.83{\pm}0.02$)가 가장 높고 앞다리살($1.03{\pm}0.00$)이 가장 낮은 것으로 조사되었다. 돈육의 지방 함량은 4.16~18.47%로 삼겹살이 가장 높고 안심살이 가장 낮았으나 안심살, 등심살, 앞사태살, 뒷사태살, 홍두깨살의 지방 함량에는 유의적인 차이가 없었다(P>0.05). 주요 지방산은 palmitic acid와 stearic acid, oleic acid 및 linoleic acid로 그 함량은 oleic acid> palmitic acid> linoleic acid> stearic acid의 순서로 확인되었다. 삼겹살에는 다양한 지방산이 함유되어 있었으나 등심에는 검출되지 않은 지방산이 많았다. 그러나 미엘린의 생합성에 중요한 역할을 하는 nervonic acid(C24:1)는 오직 등심에서만 검출되었다. 삼겹살에는 다른 부위에 검출되지 않은 docosahexaenoic acid(DHA, C22:6, n-3)가 존재하였다. 돈육의 10부위 중 앞사태살과 뒷사태살, 홍두깨살은 지방 함량 및 지방산 조성이 가장 유사하였으며, 같은 앞다리라도 앞사태살과 항정살의 지방산 함량에는 현저한 차이를 보였다(P<0.05). 돈육의 총 트랜스 지방산 함량은 삼겹살(143.58 mg/100 g)> 항정살(127.86 mg/100 g)> 목심살(101.36 mg/100 g)> 갈비살(94.91 mg/100 g)> 갈매기살(86.68 mg/100 g)> 안심살(29.57 mg/100 g)> 뒷사태살(27.97 mg/100 g)> 홍두깨살(27.49 mg/100 g)> 앞사태살(25.98 mg/100 g)> 등심살(15.45 mg/100 g)의 순서로 확인되었으며, 총 포화지방산에 대한 총 불포화지방산의 비율은 뒷사태살이 2.01로 가장 높고 갈매기살이 1.28로 가장 낮았다. 이상의 결과 한우육과 돈육 각 10부위에 대한 지방 및 지방산 함량은 부위에 따라 유의적인 차이를 보이는 것으로 조사되었으며, 이러한 결과는 부위별 지방 및 지방산 함량과 조성의 표준화된 데이터베이스의 구축을 위한 기초자료로 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Gorbatov VM, Lyaskovskaya YN. 1980. Review of the flavour-contributing volatiles and water-soluble non-volatiles in pork meat and derived products. Meat Sci 4: 209-225. https://doi.org/10.1016/0309-1740(80)90050-9
  2. Hur SJ, Park GB, Joo ST. 2005. Effect of fatty acid on meat qualities. Korean J Intl Agri 17: 53-59.
  3. Wasserman AE, Spinelli AM. 1972. Effect of some water-soluble components on aroma of heated adipose tissue. J Agric Food Chem 20: 171-174. https://doi.org/10.1021/jf60180a003
  4. Bailey ME. 1983. The Maillard reaction and meat flavor. In The Maillard Reaction in Foods and Nutrition. Waller GR, Feather MS, eds. American Chemical Society, Washington, DC, USA. Vol 11, p 169-184.
  5. Shin KK, Park HI, Lee SK, Kim CJ. 1998. Studies on fatty acids composition of different portions in various meat. Korean J Food Sci Ani Resour 18: 261-268.
  6. Lee YJ, Kim CJ, Kim JH, Park BY, Seong PN, Kang GH, Kim DH, Cho SH. 2010. Comparison of fatty acid composition of Hanwoo beef by different quality grades and cuts. Korean J Food Sci Ani Resour 30: 110-119. https://doi.org/10.5851/kosfa.2010.30.1.110
  7. Kim D, Kim KH, Hong JK, Cho KH, Sa SJ, Park JC, Choi SH. 2013. Comparison of carcass characteristics, meat quality, amino acids contents, and fatty acid profiles of Korea native pig by gender. Reprod Dev Biol 37: 129-134. https://doi.org/10.12749/RDB.2013.37.3.129
  8. Statistics Korea. 2008-2015. Korea National Health and Nutrition Examination Survey. http://kosis.kr/statHtml/statHtml.do?orgId=117&tblId=DT_11702_N025&vw_cd=MT_ZTITLE&list_id=117_11702_A01_033&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=E1 (accessed Mar 2017).
  9. Korea Health Statistics. 2015. Korea National Health and Nutrition Examination Survey. Chungbuk, Korea. p 67-261.
  10. Jeong SH, Shin JA, Kim IH, Kim BH, Lee JS, Lee KT. 2014. Comparison of fatty acid composition by fat extraction method: Different parts of chicken by cooking method. J Korean Soc Food Sci Nutr 43: 1257-1263. https://doi.org/10.3746/jkfn.2014.43.8.1257
  11. Kim KA. 1986. Changes of fatty acid composition in shank during heating time and frozen storage. Korean J Soc Food Sci 2: 8-15.
  12. Park GB, Lee JS, Lee HG, Song DJ. 1989. Changes of fatty acid composition of Korean native cattle and porcine muscles during postmortem storage. Korean J Anim Sci 31: 254-260.
  13. Seong PN, Cho SH, Kim JH, Kang GH, Park BY, Lee JM, Kim DH. 2010. Changes in haem pigments, peroxide value, TBARS, free fatty acid contents and fatty acid composition of muscles from low fat pork cuts during chilled storage. Korean J Food Sci Ani Resour 30: 427-434. https://doi.org/10.5851/kosfa.2010.30.3.427
  14. Korea Food and Drug Administration. 2010. Food Standard Codex. Korean Foods Industry Association, Seoul, Korea.
  15. Cho S, Kang S, Kang G, Seong P, Park K, Chang S, Lee S, Cho Y, Park B. 2013. Physicochemical meat quality, fatty acid and free amino acid composition of strip loin, chuck tender, and eye of round produced by different age groups of Hanwoo cow. Korean J Food Sci An 33: 708-714. https://doi.org/10.5851/kosfa.2013.33.6.708
  16. Kwon HN, Choi CB. 2015. Comparison of lipid content and monounsaturated fatty acid composition of beef by country of origin and marbling score. J Korean Soc Food Sci Nutr 44: 1806-1812. https://doi.org/10.3746/jkfn.2015.44.12.1806
  17. Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V, Etherton TD. 1999. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am J Clin Nutr 70: 1009-1015. https://doi.org/10.1093/ajcn/70.6.1009
  18. Gilmore LA, Walzem RL, Crouse SF, Smith DR, Adams TH, Vaidyanathan V, Cao X, Smith SB. 2011. Consumption of high-oleic acid ground beef increases HDL-cholesterol concentration but both high- and low-oleic acid ground beef decrease HDL particle diameter in normocholesterolemic men. J Nutr 141: 1188-1194. https://doi.org/10.3945/jn.110.136085
  19. Alonso A, Ruiz-Gutierrez V, Martinez-Gonzalez MA. 2006. Monounsaturated fatty acids, olive oil and blood pressure: epidemiological, clinical and experimental evidence. Public Health Nutr 9: 251-257.
  20. Cunnane SC, Anderson MJ. 1997. The majority of dietary linoleate in growing rats is beta-oxidized or stored in visceral fat. J Nutr 127: 146-152. https://doi.org/10.1093/jn/127.1.146
  21. Ruthig DJ, Meckling-Gill KA. 1999. Both (n-3) and (n-6) fatty acids stimulate wound healing in the rat intestinal epithelial cell line, IEC-6. J Nutr 129: 1791-1798. https://doi.org/10.1093/jn/129.10.1791
  22. Pan A, Chen M, Chowdhury R, Wu JH, Sun Q, Campos H, Mozaffarian D, Hu FB. 2012. $\alpha$-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr 96: 1262-1273. https://doi.org/10.3945/ajcn.112.044040
  23. Trappe TA, Liu SZ. 2013. Effects of prostaglandins and COX-inhibiting drugs on skeletal muscle adaptations to exercise. J Appl Physiol 115: 909-919. https://doi.org/10.1152/japplphysiol.00061.2013
  24. Darios F, Davletov B. 2006. Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature 440: 813-817. https://doi.org/10.1038/nature04598
  25. Birch EE, Garfield S, Hoffman DR, Uauy R, Birch DG. 2000. A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol 42: 174-181. https://doi.org/10.1017/S0012162200000311
  26. Calderon-Garciduenas L, Reed W, Maronpot RR, Henriquez-Roldan C, Delgado-Chavez R, Calderon-Garciduenas A, Dragustinovis I, Franco-Lira M, Aragon-Flores M, Solt AC, Altenburg M, Torres-Jardon R, Swenberg JA. 2004. Brain inflammation and Alzheimer's-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 32: 650-658. https://doi.org/10.1080/01926230490520232
  27. Kummerow FA, Zhou Q, Mahfouz MM, Smiricky MR, Grieshop CM, Schaeffer DJ. 2004. Trans fatty acids in hydrogenated fat inhibited the synthesis of the polyunsaturated fatty acids in the phospholipid of arterial cells. Life Sci 74: 2707-2723. https://doi.org/10.1016/j.lfs.2003.10.013
  28. Riserus U. 2006. Trans fatty acids and insulin resistance. Atheroscler Suppl 7: 37-39.
  29. Chavarro J, Stampfer M, Campos H, Kurth T, Willett W, Ma J. 2006. A prospective study of blood trans fatty acid levels and risk of prostate cancer. Proc Amer Assoc Cancer Res 47: 943-943.
  30. Chajes V, Thiebaut AC, Rotival M, Gauthier E, Maillard V, Boutron-Ruault MC, Joulin V, Lenoir GM, Clavel-Chapelon F. 2008. Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study. Am J Epidemiol 167: 1312-1320. https://doi.org/10.1093/aje/kwn069
  31. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. 2007. Dietary fatty acid intakes and the risk of ovulatory infertility. Am J Clin Nutr 85: 231-237. https://doi.org/10.1093/ajcn/85.1.231
  32. Chan WK, Faustman C, Yin M, Decker EA. 1997. Lipid oxidation induced by oxymyoglobin and metmyoglobin with involvement of $H_2O_2$ and superoxide anion. Meat Sci 46: 181-190. https://doi.org/10.1016/S0309-1740(97)00014-4
  33. Enser M, Hallett K, Hewitt B, Fursey GA, Wood JD. 1996. Fatty acid content and composition of english beef, lamb and pork at retail. Meat Sci 42: 443-456. https://doi.org/10.1016/0309-1740(95)00037-2
  34. Amminger GP, Schafer MR, Klier CM, Slavik JM, Holzer I, Holub M, Goldstone S, Whitford TJ, McGorry PD, Berk M. 2012. Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Mol Psychiatry 17: 1150-1152. https://doi.org/10.1038/mp.2011.167
  35. Pauwels EK, Kostkiewicz M. 2008. Fatty acid facts, Part III: Cardiovascular disease, or, a fish diet is not fishy. Drug News Perspect 21: 552-561.
  36. Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. 2010. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA 303: 250. https://doi.org/10.1001/jama.2009.2008
  37. Kato T, Hancock RL, Mohammadpour H, McGregor B, Manalo P, Khaiboullina S, Hall MR, Pardini L, Pardini RS. 2002. Influence of omega-3 fatty acids on the growth of human colon carcinoma in nude mice. Cancer Lett 187: 169-177. https://doi.org/10.1016/S0304-3835(02)00432-9
  38. Bazan NG, Molina MF, Gordon WC. 2011. Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer's, and other neurodegenerative diseases. Annu Rev Nutr 31: 321-351. https://doi.org/10.1146/annurev.nutr.012809.104635
  39. Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, Lefevre AL, Cruciani-Guglielmacci C, Magnan C, Yu F, Niswender K, Irani BG, Holland WL, Clegg DJ. 2009. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 119: 2577-2589. https://doi.org/10.1172/JCI36714
  40. Pascual G, Avgustinova A, Mejetta S, Martin M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, Bescos C, Di Croce L, Benitah SA. 2017. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541: 41-45. https://doi.org/10.1038/nature20791
  41. Iso H, Sato S, Umemura U, Kudo M, Koike K, Kitamura A, Imano H, Okamura T, Naito Y, Shimamoto T. 2002. Linoleic acid, other fatty acids, and the risk of stroke. Stroke 33: 2086-2093. https://doi.org/10.1161/01.STR.0000023890.25066.50