# The Geometry Descriptions of Crystallographic Groups of Sol ${ }_{1}^{4}$ 

Won Sok Yoo ${ }^{\dagger}$

Abstract
The connected and simply connected four-dimensional matrix solvable Lie group $\mathrm{Sol}_{1}^{4}$ is the four-dimensional geometry. A crystallographic group of $\mathrm{Sol}_{1}^{4}$ is a discrete cocompact subgroup of $\mathrm{Sol}_{1}^{4} \rtimes D(4)$. In this paper, we geometrically describe the crystallographic groups of $\mathrm{Sol}_{1}^{4}$.

Keywords: Matrix Lie Group $\mathrm{Sol}_{1}^{4}$, Crystallographic Group of $\mathrm{Sol}_{1}^{4}$

## 1. Introduction

The connected and simply connected four-dimensional matrix Lie group

$$
\mathrm{Sol}_{1}^{4}=\left\{\left[\begin{array}{ccc}
1 & y & x \\
0 & e^{\theta} & z \\
0 & 0 & 1
\end{array}\right]: x, y, z, \theta \in \mathbb{R}\right\}
$$

is one of the four-dimensional geometries which were classified by Filipkiewicz ${ }^{[1]}$, see also literature ${ }^{[2]}$.

Let $G$ be a connected, simply connected Lie group. Then $\operatorname{Aff}(G)=G \rtimes \operatorname{Aut}(G)$ is called the affine group of $G$, where the group operation is given by

$$
(g, \alpha)(h, \beta)=(g \cdot \alpha(h), \alpha \beta)
$$

and $\operatorname{Aff}(G)$ acts on $G$ by

$$
(g, \alpha) z=g \cdot \alpha(z)
$$

Let $G$ be a connected, simply connected nilpotent Lie group and let $C$ be any maximal compact subgroup of $\operatorname{Aff}(G)$. Then a discrete cocompact subgroup $\Pi$ of $G \rtimes C$ is called a crystallographic group.

In this paper, we will consider the 4-dimensional connected and simply connected solvable Lie group $\mathrm{Sol}_{1}^{4}$,

Department of Applied Mathematics, Kumoh National Institute of Technology, Kumi 730-701, Korea
${ }^{\dagger}$ Corresponding author : wsyoo@kumoh.ac.kr
(Received : April 9, 2017, Accepted : June 25, 2017)
and we geometrically describe the crystallographic groups of $\mathrm{Sol}_{1}^{4}$. These crystallographic groups $\Pi$ naturally project onto crystallographic groups $\bar{\Pi}$ of Sol ${ }^{3}$ with kernel $\mathbb{Z}$.

## 2. Sol ${ }_{1}^{4}$-geometry

The group $\mathrm{Sol}_{1}^{4}$ has the three-dimensional Heisenberg group Nil $(\theta=0)$ as its nilradical. Indeed, the derived group of $\mathrm{Sol}_{1}^{4}$ is $\mathrm{Nil}^{3}$. On the other hand, $\mathrm{Sol}_{1}^{4}$ has the center $Z\left(\operatorname{Sol}_{1}^{4}\right)=\mathbb{R}(y=z=\theta=0)$, and the quotient turns out to be isomorphic to the three-dimensional solvable Lie group $\mathrm{Sol}^{3}$. Therefore, we have the following results.

Theorem 2.1 $\mathrm{Sol}_{1}^{4}$ fits in the following commutative diagram between short exact sequences:


The following results describe the lattices of $\mathrm{Sol}_{1}^{4}$ and the automorphisms on any lattice. These are obtained by using the description of lattices and endomorphisms of both $\mathrm{Nil}^{3}$ and $\mathrm{Sol}^{3}$ as follows:

Theorem 2.2 (Theorem $3.1^{[3]}$ ). Every lattice $\Gamma$ of $\mathrm{Sol}_{1}^{4}$ can be generated by $\gamma_{0}, \gamma_{1}, \gamma_{2}$ and $\gamma_{3}$ with relations

$$
\begin{aligned}
& {\left[\gamma_{1}, \gamma_{2}\right]=\gamma_{3}^{k},\left[\gamma_{1}, \gamma_{3}\right]=\left[\gamma_{2}, \gamma_{3}\right]=1,} \\
& \gamma_{0} \gamma_{1} \gamma_{0}^{-1}=\gamma_{1}^{n_{11}} \gamma_{2}^{n_{21}} \gamma_{3}^{p_{1}}, \gamma_{0} \gamma_{2} \gamma_{0}^{-1}= \\
& \gamma_{1}^{n_{12}} \gamma_{2}^{n_{22}} \gamma_{0}^{p_{2}}, \gamma_{0} \gamma_{3} \gamma_{0}^{-1}=\gamma_{3}
\end{aligned}
$$

for some integers $k, p_{1,} p_{2}$ with $k \neq 0$ and $N=\left[n_{i j}\right] \in$ $\operatorname{SL}(2, \mathbb{Z})$ with trace $>2$.

Proof. Consider the derived series of $\mathrm{Sol}_{1}^{4}: \mathrm{Sol}_{1}^{4} \supset \mathrm{Nil}^{3}$ $\supset \mathrm{Z}\left(\mathrm{Nil}^{3}\right)$. Taking intersections with $\Gamma$, we obtain

$$
\Gamma=\Gamma_{0} \supset \Gamma_{1} \supset \Gamma_{2}
$$

where $\Gamma_{1}$ is a lattice of $\mathrm{Nil}^{3}$. From the commutative diagram (2-1), we obtain a commutative diagram between lattices


Remark that the bottom exact sequence comes from the short exact sequence $1 \rightarrow \mathbb{R} \rightarrow \mathrm{Nil}^{3} \rightarrow \mathbb{R}^{2} \rightarrow 1$. Then it is well-known for example ${ }^{[4]}$ that such $\Gamma_{1}$ is generated by $\gamma_{1}, \gamma_{2}, \gamma_{4}$ satisfying the relations

$$
\left[\gamma_{1}, \gamma_{4}\right]=\left[\gamma_{2}, \gamma_{4}\right]=1, \quad\left[\gamma_{1}, \gamma_{2}\right]=\gamma_{4}^{k}
$$

for some nonzero integer $k$. In particular, $\gamma_{4}$ is a generator of $\Gamma_{2} \cong \mathbb{Z}$ and $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}$ generate $\Gamma_{1} / \Gamma_{2} \cong \mathbb{Z}^{2}$. Now from the middle vertical, we can choose $\gamma_{3} \in \Gamma_{0}$ so
that $\left\{\gamma_{1}, \cdots, \gamma_{4}\right\}$ generates $\Gamma_{0}$. We denote by $\tilde{\gamma}_{3}$ and $\tilde{\tilde{\gamma}}_{3}$ the images of $\gamma_{3}$ under the projections $\Gamma_{0} \rightarrow \Gamma_{0} / \Gamma_{2}$ and $\Gamma_{0} \rightarrow \Gamma_{0} / \Gamma_{1}$ respectively. Remark also that $\left\{\tilde{\gamma}_{1}, \tilde{\gamma}_{2}, \tilde{\gamma}_{3}\right\}$ is a generator set of $\Gamma_{0} / \Gamma_{2}$, which is a lattice of $\mathrm{Sol}^{3}$. Because $\left\{\tilde{\gamma}_{1}, \tilde{\gamma}_{2}\right\}$ generates $\Gamma_{1} / \Gamma_{2} \cong \mathbb{Z}^{2}$ and $\tilde{\tilde{\gamma}}_{3}$ generates $\Gamma_{0} / \Gamma_{1} \cong \mathbb{Z}$, we must have

$$
\left[\tilde{\gamma}_{1}, \tilde{\gamma}_{2}\right]=1, \tilde{\gamma}_{3} \tilde{\gamma}_{i} \tilde{\gamma}_{3}^{-1}=\tilde{\gamma}_{1}^{\ell_{1}} \tilde{\gamma}_{2}^{\ell_{2 i}}
$$

for some integers $\ell_{i j}$. Let $A=\left[\ell_{i j}\right]$. Then it can be seen that $A \in \mathrm{SL}(2, \mathbb{Z})$ with trace $>2$. For details about lattices of $\mathrm{Sol}^{3}$, we refer to references ${ }^{[5,6]}$. On the other hand, the conjugation by $\gamma_{3}$ induces an automorphism on $\Gamma_{1}$. Because this automorphism must preserve the relation $\left[\gamma_{1}, \gamma_{2}\right]=\gamma_{3}^{k}$, it follows that $\gamma_{3} \gamma_{4} \gamma_{3}^{-1}=$ $\gamma_{4}^{\operatorname{det}(A)}=\gamma_{4}$. Consequently, the theorem is proved.

We denote by $\Gamma_{k, N, \mathrm{P}}$ a lattice of $\mathrm{Sol}_{1}^{4}$ with presentation in Theorem 2.2. As it can be observed easily, the canonical projection $\mathrm{Sol}_{1}^{4} \rightarrow \mathrm{Sol}_{1}^{3}$ sends the lattice $\Gamma_{k, N, \mathrm{P}}$ $\mathrm{Sol}_{1}^{4}$ to a lattice of $\mathrm{Sol}^{3}$ with presentation

$$
\begin{aligned}
& <\bar{\gamma}_{0}, \bar{\gamma}_{1}, \bar{\gamma}_{2} \mid\left[\bar{\gamma}_{1}, \bar{\gamma}_{2}\right]=1, \bar{\gamma}_{0} \bar{\gamma}_{i} \bar{\gamma}_{0}^{-1}=\bar{\gamma}_{1}^{n_{1}} \bar{\gamma}_{2}^{n_{2 i}}, i= \\
& 1,2>\text {. }
\end{aligned}
$$

We will denote this lattice of $\mathrm{Sol}^{3}$ by $\Gamma_{N}$. Moreover, $\Gamma_{k, N, \mathrm{P}} \cap \mathrm{Nil}^{3}$ is a lattice of $\mathrm{Nil}^{3}$ with presentation
$\Gamma_{k}=\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3} \mid\left[\gamma_{1}, \gamma_{3}\right]=\left[\gamma_{2}, \gamma_{3}\right]=1, \quad\left[\gamma_{1}, \gamma_{2}\right]=\gamma_{3}^{k}\right\rangle$.
Therefore, we have the following results.
Theorem 2.3 The following diagram is commutative.


Theorem 2.4 (Theorem 3.2 ${ }^{[3]}$ ). Let

$$
\begin{gathered}
\Gamma_{k, N, \mathrm{P}}= \\
\left\langle\gamma_{0, \gamma_{1}, \gamma_{2}, \gamma_{3} \mid}^{\left[\gamma_{1}, \gamma_{2}\right]=\gamma_{3}^{k}, \quad\left[\gamma_{0}, \gamma_{3}\right]=\left[\gamma_{1}, \gamma_{3}\right]=\left[\gamma_{2}, \gamma_{3}\right]=1,} \begin{array}{l}
\gamma_{0} \gamma_{1} \gamma_{0}^{-1}=\gamma_{1}^{n_{11}} \gamma_{2}^{n_{2}} \gamma_{3}^{p_{1},}, \quad \gamma_{0} \gamma_{2} \gamma_{0}^{-1}=\gamma_{1}^{n_{1}} \gamma_{2}^{n_{2} n_{2} \gamma_{3}^{p_{2}}}
\end{array}\right\rangle
\end{gathered}
$$

be a lattice of $\mathrm{Sol}_{1}^{4}$. Then any endomorphism $\phi$ on $\Gamma_{k, N, \mathrm{P}}$ is either one of the following forms:

Type (I)
$\phi\left(\gamma_{0}\right)=\gamma_{0} \gamma_{1}^{r_{1}} \gamma_{2}^{r_{2}} \gamma_{3}^{q_{0}}$,
$\phi\left(\gamma_{1}\right)=\gamma_{1}^{u} \gamma_{2}^{\frac{n_{21}}{n_{12}} \nu} \gamma_{3}^{q_{1}}, \quad \phi\left(\gamma_{2}\right)=\gamma_{1}^{\nu} \gamma_{2}^{\mu+\frac{n_{22}-n_{11}}{n_{12}} \nu} \gamma_{3}^{q_{2}}$,
$\phi\left(\gamma_{3}\right)=\gamma_{3} \mu^{\left(\mu+\frac{n_{22}-n_{11}}{n_{12}} \nu\right)-\frac{n_{21}}{n_{12}} \nu^{2}} ;$

Type (II)
$\phi\left(\gamma_{0}\right)=\gamma_{0}^{-1} \gamma_{1}^{r_{1}} \gamma_{2}^{r_{2}} \gamma_{3}^{q_{0}}$,
$\phi\left(\gamma_{1}\right)=\gamma_{1}^{-\mu} \gamma_{2} \gamma_{3}^{q_{1}}, \quad \phi\left(\gamma_{2}\right)=\gamma_{1}^{\frac{n_{11}-n_{22}}{n_{21}} \mu-\frac{n_{12}}{n_{21}} \nu} \gamma_{2}^{\mu} \gamma_{3}^{q_{2}}$,
$\phi\left(\gamma_{3}\right)=\gamma_{3}^{-\mu^{2}-\left(\frac{n_{11}-n_{22}}{n_{21}} \mu-\frac{n_{12}}{n_{21}}\right) \nu} ;$

Type (III)

$$
\begin{aligned}
& \phi\left(\gamma_{0}\right)=\gamma_{0}^{m} \gamma_{1}^{r_{1}} \gamma_{2}^{r_{2}} \gamma_{3}^{q_{0}} \text { with } m \neq \pm 1, \\
& \phi\left(\gamma_{1}\right)=\gamma_{3}^{q_{1}}, \quad \phi\left(\gamma_{2}\right)=\gamma_{3}^{q_{2}}, \quad \phi\left(\gamma_{3}\right)=1 .
\end{aligned}
$$

Remark from the above theorem that the type of $\phi$ is determined by the exponent of $\gamma_{0}$ in the image $\phi\left(\gamma_{0}\right)$. If $\phi$ is of type (II), then $\phi^{2}$ is of type (I). When $\phi$ is an automorphism, the type (III) cannot occur.

Let $\phi$ be an endomorphism on the lattice $\Gamma_{k, N, \mathrm{P}} \subset \operatorname{Sol}_{1}^{4}$. Since $\mathrm{Sol}_{1}^{4}$ is of type (R), $\phi$ extends uniquely to a Lie group endomorphism of $\mathrm{Sol}_{1}^{4}$, and then induces a Lie group endomorphism of $\mathrm{Sol}^{3} \cong \operatorname{Sol}_{1}^{4} / Z\left(\mathrm{Sol}_{1}^{4}\right)$ so that these endomorphisms commute with the canonical projection $\mathrm{Sol}_{1}^{4} \rightarrow \mathrm{Sol}^{3}$. This implies that $\phi: \Gamma_{k, N, \mathrm{P}} \rightarrow$ $\Gamma_{k, N, \mathrm{P}}$ induces $\bar{\phi}: \Gamma_{N} \rightarrow \Gamma_{N}$. Therefore, we have the following results.

Theorem 2.5 The following diagram is commutative.


Since the type of $\phi$ is determined by the exponent of $\gamma_{0}$ in the image $\phi\left(\gamma_{0}\right)$, it follows that $\phi$ and $\bar{\phi}$ have the same type.

Remark 2.6 From the diagram above, we have that $\phi\left(\gamma_{3}\right)=\phi^{\prime}\left(\gamma_{3}\right)=\gamma_{3}^{d}$ for some integer $d$. By Theorem 2.4, $d$ is completely determined by the images $\phi\left(\gamma_{1}\right)$ and $\phi\left(\gamma_{2}\right)$ and hence by the images $\bar{\phi}\left(\bar{\gamma}_{1}\right)$ and $\bar{\phi}\left(\bar{\gamma}_{2}\right)$. Namely, if $\phi\left(\gamma_{1}\right)=\gamma_{1}^{d_{11}} \gamma_{2}^{d_{21}} \gamma_{3}^{*}$ and $\phi\left(\gamma_{2}\right)=\gamma_{1}^{d_{12}} \gamma_{2}^{d_{22}} \gamma_{3}^{*}$ then $\quad \bar{\phi}\left(\bar{\gamma}_{1}\right)=\bar{\gamma}_{1}^{d_{11}} \gamma_{2}^{d_{21}}, \quad \bar{\phi}\left(\bar{\gamma}_{2}\right)=\bar{\gamma}_{1}^{d_{12}} \bar{\gamma}_{2}^{d_{22}} \quad$ and $d=d_{11} d_{22}-d_{12} d_{21}$. We will denote $d$ by $n(\phi)=n(\bar{\phi})$.

Recall that $\operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$ has a maximal compact subgroup which is isomorphic to the dihedral group $D(4)$ of order 8 , see literatures ${ }^{[7,8]}$. A crystallographic group of $\mathrm{Sol}_{1}^{4}$ is a discrete cocompact subgroup $\Pi$ of $\mathrm{Sol}_{1}^{4} \rtimes D(4)$. In this case, $\Gamma=\Pi \cap \mathrm{Sol}_{1}^{4}$ is a lattice of $\mathrm{Sol}_{1}^{4}$, and $\Gamma$ has finite index in $\Pi$. The finite group $\Phi=\Pi / \Gamma$ is called the holonomy group $\Pi$. A torsion-free crystallographic of $\mathrm{Sol}_{1}^{4}$ is a Bieberbach group of $\mathrm{Sol}_{1}^{4}$. Therefore, we have the following results.

Theorem 2.7 The following diagram is commutative.


Note that the canonical projection $\mathrm{Sol}_{1}^{4} \rightarrow \mathrm{Sol}^{3} \cong \mathrm{Sol}_{1}^{4}$ $/ Z\left(\mathrm{Sol}_{1}^{4}\right)$ induces a homomorphism $\operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right) \rightarrow$ Aut $\left(\mathrm{Sol}^{3}\right)$, which maps isomorphically a maximal compact subgroup of $\operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$ onto a maximal compact subgroup of $\operatorname{Aut}\left(\mathrm{Sol}^{3}\right)$ (see Theorem 2.4). Therefore, we have the following results.

Theorem 2.8 The following diagram between short exact sequences is commutative.


Theorem 2.9 Let $\Pi \subset \operatorname{Sol}_{1}^{4} \rtimes D(4)$ be a crystallographic group. Then it fits in the following commutative diagram


Here $\bar{\Pi}$ is a crystallographic group of $\mathrm{Sol}^{3}$.
It is known from Theorem $8.2^{[6]}$ that there are 9 kinds of crystallographic groups of $\mathrm{Sol}^{3}: \Gamma_{N}, \Pi_{1}(\mathrm{k}), \Pi_{2}^{ \pm}$, $\Pi_{3}\left(\mathrm{k}, \mathrm{k}^{\prime}\right), \Pi_{4}(\mathrm{k}), \Pi_{5}\left(\mathrm{~m}, \mathrm{k}, \mathrm{k}^{\prime}, \mathrm{n}\right), \Pi_{6}\left(\mathrm{k}, \mathrm{k}^{\prime}\right), \Pi_{7}(\mathrm{k})$ and $\Pi_{8}(\mathrm{k}, \mathrm{m})$. Here $N \in \operatorname{SL}(2, N)$ of trace $>2$. There are 4 kinds of Bieberbach groups of $\mathrm{Sol}^{3}$. We recall from Corollary $8.3^{[6,8]}$ that $\Gamma_{A}$ and $\Pi_{2}^{ \pm}$are Bieberbach groups, and the crystallographic groups $\Pi_{1}(\mathrm{k}), \Pi_{4}(\mathrm{k})$, $\Pi_{5}\left(\mathrm{~m}, \mathrm{k}, \mathrm{k}^{\prime}, \mathrm{n}\right), \Pi_{7}(\mathrm{k})$ and $\Pi_{8}(\mathrm{k}, \mathrm{m})$ are not Bieberbach groups. The crystallographic groups $\Pi_{3}\left(\mathrm{k}, \mathrm{k}^{\prime}\right)$ and $\Pi_{6}\left(\mathrm{k}, \mathrm{k}^{\prime}\right)$ become Bieberbach groups for a particular choice of $k$ and $k^{\prime}$. In fact, we may assume

$$
M=\left[\begin{array}{rr}
-1 & m \\
0 & 1
\end{array}\right]
$$

where $m=0$ or 1 . If $m=0$, then $\ell_{11}=\ell_{22}$ and $\operatorname{ker}(I-M)$ $\operatorname{/im}(I+M) \cong \mathbb{Z}_{2}$ is generated by $\mathrm{e}_{2}=(0,1)^{t}$. If $m$ $=1$, then $\ell_{11}-\ell_{22}=\ell_{21}$ and $\operatorname{ker}(I-M) / \operatorname{im}(I+M)$ is a trivial group and hence $\mathrm{k}=0$. It is known in Sect. 3[8] that they are Bieberbach groups if and only if $m=0$, $\mathrm{k}=\mathrm{e}_{2}$ and $\mathrm{k}^{\prime}-\mathrm{k} \neq 0$. Thus they are not Bieberbach groups if and only if

> 1. $m=1$,
> 2. $m=0$ and $\mathrm{k}=0$, or
> 3. $m=0$ and $\mathrm{k}=\mathrm{k}^{\prime}=\mathrm{e}_{2}$.

Consequently, given $\bar{\Pi}$ with $\bar{\Gamma}=\Gamma_{N}$ and given $\Gamma=$ $\Gamma_{k, N, \mathrm{P}}$, any abstract group $\Pi$ fitting the diagram (2-2) is a crystallographic group of $\mathrm{Sol}_{1}^{4}$. We can describe the crystallographic groups of $\mathrm{Sol}_{1}^{4}$ as follows: Since $\Gamma_{k, N, P} \subset \Pi$ and $\Phi$ has at most two generators, say $\alpha, \beta$, we can choose a set of generators $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}, \alpha, \beta\right\}$ of $\Pi$ so that $\Pi$ has relations: the relations for $\Gamma_{k, N, P}$ plus new relations

$$
\begin{aligned}
& \alpha \gamma_{i} \alpha^{-1}=v_{i}\left(\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right), \\
& \beta \gamma_{i} \beta^{-1}=w_{i}\left(\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right) \quad(i=0,1,2,3), \\
& r_{j}=u_{j}\left(\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right), \text { a relation } r_{j} \text { of } \Phi .
\end{aligned}
$$

Here the words $v_{i}$ and $w_{i}$ are of the forms given in Theorem 2.4. In particular,

$$
\begin{array}{ll}
\alpha \gamma_{0} \alpha^{-1}=\gamma_{0}^{ \pm 1} \gamma_{2}^{*} \gamma_{3}^{*} \gamma_{4}^{*}, & \alpha \gamma_{3} \alpha^{-1}=\gamma_{3}^{ \pm 1}, \\
\beta \gamma_{0} \beta^{-1}=\gamma_{0}^{ \pm 1} \gamma_{2}^{*} \gamma_{3}^{*} \gamma_{4}^{*}, & \beta \gamma_{3} \beta^{-1}=\gamma_{3}^{ \pm 1} .
\end{array}
$$

But we cannot choose the integers * in the above relations completely freely. For the details, we refer to reference ${ }^{[7,9,10]}$.

## Acknowledgments

This research was supported by Kumoh National Institute of Technology.

## References

[1] R. Filipkiewicz, "Four dimensional geometries", PhD diss, University of Warick, 1983.
[2] C. T. C. Wall, "Geometric structures on compact
complex analytic surfaces", Topology, Vol. 25, pp. 119-153, 1986.
[3] J. H. Jo and J. B. Lee, "Nielsen type numbers and homotopy minimal periods for maps on solvmanifolds with $\mathrm{Sol}_{1}^{4}$-geometry", Fixed Point Theory and Applications, Vol. 175, pp. 1-15, 2015.
[4] J. B. Lee and X. Zhao, "Nielsen type numbers and homotopy minimal periods for all continuous maps on the 3-nilmanifolds", Sci. China Ser. A Math., Vol. 51, pp. 351-360, 2008.
[5] J. B. Lee and X. Zhao, "Nielsen type numbers and homotopy minimal periods for maps on the 3-solvmanifolds", Algebraic \& Geometric Topology, Vol. 8, pp. 563-580, 2008.
[6] K. Y. Ha and J. B. Lee, "Crystallographic groups of Sol", Mathematische Nachrichten, Vol. 286, pp. 1614-1667, 2013.
[7] K. B. Lee and S. Thuong, "Infra-solvmanifolds of $\mathrm{Sol}_{1}^{4, \prime}$, J. Korean Math. Soc., Vol. 52, pp. 1209-1251, 2015.
[8] K. Y. Ha and J. B. Lee, "The $R_{\infty}$ property for crystallographic groups of Sol", Topol. Appl., Vol. 181, pp. 112-133, 2015.
[9] K. Y. Ha, J. B. Lee, and P. penninckx, "Formulas for the reidemeister, lefschetz and nielsen coincidence number of maps between infra-nilmanifolds", Fixed Point Theory Applications, Vol. 39, pp. 1-23, 2012.
[10] P. R. Health, "Groupoids and relations among reidemeister and among nielsen numbers", Topol. Appl., Vol. 181, pp. 3-33, 2015.

