J. Chosun Natural Sci. Vol. 10, No. 2 (2017) pp. 110 – 114 https://doi.org/10.13160/ricns.2017.10.2.110

The Geometry Descriptions of Crystallographic Groups of Sol⁴₁

Won Sok Yoo[†]

Abstract

The connected and simply connected four-dimensional matrix solvable Lie group Sol_1^4 is the four-dimensional geometry. A crystallographic group of Sol_1^4 is a discrete cocompact subgroup of $Sol_1^4 \rtimes D(4)$. In this paper, we geometrically describe the crystallographic groups of Sol_1^4 .

Keywords: Matrix Lie Group Sol_1^4 , Crystallographic Group of Sol_1^4

1. Introduction

The connected and simply connected four-dimensional matrix Lie group

$$\operatorname{Sol}_1^4 = \left\{ \begin{bmatrix} 1 & y & x \\ 0 & e^\theta & z \\ 0 & 0 & 1 \end{bmatrix} : x, y, z, \theta \in \mathbb{R} \right\}$$

is one of the four-dimensional geometries which were classified by Filipkiewicz^[1], see also literature^[2].

Let *G* be a connected, simply connected Lie group. Then $Aff(G) = G \rtimes Aut(G)$ is called the affine group of *G*, where the group operation is given by

$$(g,\alpha)(h,\beta) = (g \cdot \alpha(h), \alpha\beta)$$

and Aff(G) acts on G by

$$(g,\alpha)z = g \cdot \alpha(z).$$

Let *G* be a connected, simply connected nilpotent Lie group and let *C* be any maximal compact subgroup of Aff(*G*). Then a discrete cocompact subgroup Π of $G \bowtie C$ is called a crystallographic group.

In this paper, we will consider the 4-dimensional connected and simply connected solvable Lie group Sol_{1}^{4} ,

and we geometrically describe the crystallographic groups of Sol⁴₁. These crystallographic groups Π naturally project onto crystallographic groups $\overline{\Pi}$ of Sol³ with kernel \mathbb{Z} .

2. Sol⁴-geometry

The group Sol₁⁴ has the three-dimensional Heisenberg group Nil ($\theta = 0$) as its nilradical. Indeed, the derived group of Sol₁⁴ is Nil³. On the other hand, Sol₁⁴ has the center $Z(Sol_1^4) = \mathbb{R}$ ($y = z = \theta = 0$), and the quotient turns out to be isomorphic to the three-dimensional solvable Lie group Sol³. Therefore, we have the following results.

Theorem 2.1 Sol_1^4 fits in the following commutative diagram between short exact sequences:

Department of Applied Mathematics, Kumoh National Institute of Technology, Kumi 730-701, Korea

[†]Corresponding author : wsyoo@kumoh.ac.kr

⁽Received : April 9, 2017, Accepted : June 25, 2017)

The following results describe the lattices of Sol_1^4 and the automorphisms on any lattice. These are obtained by using the description of lattices and endomorphisms of both Nil³ and Sol³ as follows:

Theorem 2.2 (Theorem 3.1^[3]). Every lattice Γ of Sol⁴₁ can be generated by $\gamma_0, \gamma_1, \gamma_2$ and γ_3 with relations

$$\begin{split} &[\gamma_1,\gamma_2] = \gamma_3^k, [\gamma_1,\gamma_3] = [\gamma_2,\gamma_3] = 1, \\ &\gamma_0\gamma_1\gamma_0^{-1} = \gamma_1^{n_{11}}\gamma_2^{n_{21}}\gamma_3^{p_1}, \ \gamma_0\gamma_2\gamma_0^{-1} = \\ &\gamma_1^{n_2}\gamma_2^{p_2}\gamma_0^{p_2}, \ \gamma_0\gamma_3\gamma_0^{-1} = \gamma_3 \end{split}$$

for some integers k, p_1, p_2 with $k \neq 0$ and $N = [n_{ij}] \in$ SL(2, \mathbb{Z}) with trace > 2.

Proof. Consider the derived series of Sol_1^4 : $Sol_1^4 \supset Nil^3$ $\supset Z(Nil^3)$. Taking intersections with Γ , we obtain

$$\varGamma = \varGamma_0 \, \supset \, \varGamma_1 \, \supset \, \varGamma_2$$

where Γ_1 is a lattice of Nil³. From the commutative diagram (2-1), we obtain a commutative diagram between lattices

Remark that the bottom exact sequence comes from the short exact sequence $1 \to \mathbb{R} \to \text{Nil}^3 \to \mathbb{R}^2 \to 1$. Then it is well-known for example^[4] that such Γ_1 is generated by $\gamma_1, \gamma_2, \gamma_4$ satisfying the relations

$$[\gamma_{1,}\gamma_{4}] = [\gamma_{2,}\gamma_{4}] = 1, \quad [\gamma_{1,}\gamma_{2}] = \gamma_{4}^{k}$$

for some nonzero integer k. In particular, γ_4 is a generator of $\Gamma_2 \cong \mathbb{Z}$ and $\tilde{\gamma}_1$, $\tilde{\gamma}_2$ generate $\Gamma_1/\Gamma_2 \cong \mathbb{Z}^2$. Now from the middle vertical, we can choose $\gamma_3 \in \Gamma_0$ so that $\{\gamma_1, \dots, \gamma_4\}$ generates Γ_0 . We denote by $\tilde{\gamma}_3$ and $\tilde{\tilde{\gamma}}_3$ the images of γ_3 under the projections $\Gamma_0 \rightarrow \Gamma_0/\Gamma_2$ and $\Gamma_0 \rightarrow \Gamma_0/\Gamma_1$ respectively. Remark also that $\{\tilde{\gamma}_1, \tilde{\gamma}_2, \tilde{\gamma}_3\}$ is a generator set of Γ_0/Γ_2 , which is a lattice of Sol³. Because $\{\tilde{\gamma}_1, \tilde{\gamma}_2\}$ generates $\Gamma_1/\Gamma_2 \cong \mathbb{Z}^2$ and $\tilde{\tilde{\gamma}}_3$ generates $\Gamma_0/\Gamma_1 \cong \mathbb{Z}$, we must have

$$[\tilde{\gamma}_1, \tilde{\gamma}_2] = 1, \, \tilde{\gamma}_3 \tilde{\gamma}_i \tilde{\gamma}_3^{-1} = \tilde{\gamma}_1^{\ell_{1i}} \tilde{\gamma}_2^{\ell_{2i}}$$

for some integers ℓ_{ij} . Let $A = [\ell_{ij}]$. Then it can be seen that $A \in SL(2, \mathbb{Z})$ with trace > 2. For details about lattices of Sol³, we refer to references^[5,6]. On the other hand, the conjugation by γ_3 induces an automorphism on Γ_1 . Because this automorphism must preserve the relation $[\gamma_1, \gamma_2] = \gamma_3^k$, it follows that $\gamma_3 \gamma_4 \gamma_3^{-1} =$ $\gamma_4^{\det(A)} = \gamma_4$. Consequently, the theorem is proved.

We denote by $\Gamma_{k,N,\mathbf{P}}$ a lattice of Sol⁴₁ with presentation in Theorem 2.2. As it can be observed easily, the canonical projection Sol⁴₁ \rightarrow Sol³₁ sends the lattice $\Gamma_{k,N,\mathbf{P}}$ Sol⁴₁ to a lattice of Sol³ with presentation

$$\langle \overline{\gamma}_0, \overline{\gamma}_1, \overline{\gamma}_2 \mid [\overline{\gamma}_1, \overline{\gamma}_2] = 1, \ \overline{\gamma}_0 \overline{\gamma}_i \overline{\gamma}_0^{-1} = \overline{\gamma}_1^{n_{1i}} \overline{\gamma}_2^{n_{2i}}, \ i = 1, 2 >.$$

We will denote this lattice of Sol³ by Γ_N . Moreover, $\Gamma_{k,N\mathbf{P}} \cap \operatorname{Nil}^3$ is a lattice of Nil³ with presentation

$$\Gamma_{k} = \langle \gamma_{1}, \gamma_{2}, \gamma_{3} | [\gamma_{1}, \gamma_{3}] = [\gamma_{2}, \gamma_{3}] = 1, \ [\gamma_{1}, \gamma_{2}] = \gamma_{3}^{k} \rangle.$$

Therefore, we have the following results.

Theorem 2.3 The following diagram is commutative.

J. Chosun Natural Sci., Vol. 10, No. 2, 2017

Theorem 2.4 (Theorem 3.2^[3]). Let

$$\begin{split} & \Gamma_{k,N,\mathbf{P}} = \\ & \left\langle \left. \gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3} \right| \left. \begin{array}{c} \left[\gamma_{1}, \gamma_{2} \right] = \gamma_{3}^{k}, & \left[\gamma_{0}, \gamma_{3} \right] = \left[\gamma_{1}, \gamma_{3} \right] = \left[\gamma_{2}, \gamma_{3} \right] = 1, \\ & \gamma_{0} \gamma_{1} \gamma_{0}^{-1} = \gamma_{1}^{n_{11}} \gamma_{2}^{n_{22}} \gamma_{3}^{p_{1}}, & \gamma_{0} \gamma_{2} \gamma_{0}^{-1} = \gamma_{1}^{n_{12}} \gamma_{2}^{n_{22}} \gamma_{3}^{p_{2}} \end{array} \right\rangle \end{split}$$

be a lattice of Sol⁴₁. Then any endomorphism ϕ on $\Gamma_{k,N,\mathbf{P}}$ is either one of the following forms:

$$\begin{split} \phi(\gamma_0) &= \gamma_0 \gamma_1^{r_1} \gamma_2^{r_2} \gamma_3^{q_0}, \\ \phi(\gamma_1) &= \gamma_1^{u} \gamma_2^{\frac{n_{21}}{n_{12}}\nu} \gamma_3^{q_1}, \quad \phi(\gamma_2) = \gamma_1^{\nu} \gamma_2^{\mu + \frac{n_{22} - n_{11}}{n_{12}}\nu} \gamma_3^{q_2}, \\ \phi(\gamma_3) &= \gamma_3^{\mu(\mu + \frac{n_{22} - n_{11}}{n_{12}}\nu) - \frac{n_{21}}{n_{12}}\nu^2}; \end{split}$$

$$\begin{split} & \text{Type (II)} \\ & \phi(\gamma_0) = \gamma_0^{-1} \gamma_1^{r_1} \gamma_2^{r_2} \gamma_3^{q_0}, \\ & \phi(\gamma_1) = \gamma_1^{-\mu} \gamma_2^{\nu} \gamma_3^{q_1}, \quad \phi(\gamma_2) = \gamma_1^{\frac{n_{11} - n_{22}}{n_{21}} \mu - \frac{n_{12}}{n_{21}} \nu} \gamma_2^{\mu} \gamma_3^{q_2}, \\ & \phi(\gamma_3) = \gamma_3^{-\mu^2 - (\frac{n_{11} - n_{22}}{n_{21}} \mu - \frac{n_{12}}{n_{21}} \nu)\nu}; \end{split}$$

Type (III) $\phi(\gamma_0) = \gamma_0^m \gamma_1^{r_1} \gamma_2^{r_2} \gamma_3^{q_0} \text{ with } m \neq \pm 1,$

 $\phi(\gamma_1) = \gamma_3^{q_1}, \quad \phi(\gamma_2) = \gamma_3^{q_2}, \quad \phi(\gamma_3) = 1.$

Remark from the above theorem that the type of ϕ is determined by the exponent of γ_0 in the image $\phi(\gamma_0)$. If ϕ is of type (II), then ϕ^2 is of type (I). When ϕ is an automorphism, the type (III) cannot occur.

Let ϕ be an endomorphism on the lattice $\Gamma_{k,N,\mathbf{P}} \subset \text{Sol}_1^4$. Since Sol_1^4 is of type (R), ϕ extends uniquely to a Lie group endomorphism of Sol_1^4 , and then induces a Lie group endomorphism of $\text{Sol}^3 \cong \text{Sol}_1^4 / \mathbb{Z}(\text{Sol}_1^4)$ so that these endomorphisms commute with the canonical projection $\text{Sol}_1^4 \rightarrow \text{Sol}^3$. This implies that $\phi : \Gamma_{k,N,\mathbf{P}} \rightarrow$ $\Gamma_{k,N,\mathbf{P}}$ induces $\overline{\phi} : \Gamma_N \rightarrow \Gamma_N$. Therefore, we have the following results. Theorem 2.5 The following diagram is commutative.

Since the type of ϕ is determined by the exponent of γ_0 in the image $\phi(\gamma_0)$, it follows that ϕ and $\overline{\phi}$ have the same type.

Remark 2.6 From the diagram above, we have that $\phi(\gamma_3) = \phi'(\gamma_3) = \gamma_3^d$ for some integer *d*. By Theorem 2.4, *d* is completely determined by the images $\phi(\gamma_1)$ and $\phi(\gamma_2)$ and hence by the images $\overline{\phi}(\overline{\gamma}_1)$ and $\overline{\phi}(\overline{\gamma}_2)$. Namely, if $\phi(\gamma_1) = \gamma_1^{d_{11}} \gamma_2^{d_{21}} \gamma_3^*$ and $\phi(\gamma_2) = \gamma_1^{d_{12}} \gamma_2^{d_{22}} \gamma_3^*$ then $\overline{\phi}(\overline{\gamma}_1) = \overline{\gamma}_1^{d_{11}} \overline{\gamma}_2^{d_2}$, $\overline{\phi}(\overline{\gamma}_2) = \overline{\gamma}_1^{d_{12}} \overline{\gamma}_2^{d_{22}}$ and $d = d_{11}d_{22} - d_{12}d_{21}$. We will denote *d* by $n(\phi) = n(\overline{\phi})$.

Recall that Aut(Sol⁴₁) has a maximal compact subgroup which is isomorphic to the dihedral group D(4) of order 8, see literatures^[7,8]. A crystallographic group of Sol⁴₁ is a discrete cocompact subgroup Π of Sol⁴₁ $\rtimes D(4)$. In this case, $\Gamma = \Pi \cap \text{Sol}^4_1$ is a lattice of Sol⁴₁, and Γ has finite index in Π . The finite group $\Phi = \Pi/\Gamma$ is called the holonomy group Π . A torsion-free crystallographic of Sol⁴₁ is a Bieberbach group of Sol⁴₁. Therefore, we have the following results.

Theorem 2.7 The following diagram is commutative.

Note that the canonical projection $\operatorname{Sol}_1^4 \to \operatorname{Sol}^3 \cong \operatorname{Sol}_1^4$ / $Z(\operatorname{Sol}_1^4)$ induces a homomorphism $\operatorname{Aut}(\operatorname{Sol}_1^4) \to \operatorname{Aut}(\operatorname{Sol}^3)$, which maps isomorphically a maximal compact subgroup of $\operatorname{Aut}(\operatorname{Sol}_1^4)$ onto a maximal compact subgroup of $\operatorname{Aut}(\operatorname{Sol}^3)$ (see Theorem 2.4). Therefore, we have the following results. **Theorem 2.8** The following diagram between short exact sequences is commutative.

Theorem 2.9 Let $\Pi \subset \text{Sol}_1^4 \rtimes D(4)$ be a crystallographic group. Then it fits in the following commutative diagram

Here $\overline{\Pi}$ is a crystallographic group of Sol³.

It is known from Theorem 8.2^[6] that there are 9 kinds of crystallographic groups of Sol³: Γ_N , $\Pi_1(\mathbf{k})$, Π_2^{\pm} , $\Pi_3(\mathbf{k}, \mathbf{k}')$, $\Pi_4(\mathbf{k})$, $\Pi_5(\mathbf{m}, \mathbf{k}, \mathbf{k}', \mathbf{n})$, $\Pi_6(\mathbf{k}, \mathbf{k}')$, $\Pi_7(\mathbf{k})$ and $\Pi_8(\mathbf{k}, \mathbf{m})$. Here $N \in SL(2, \mathbb{N})$ of trace > 2. There are 4 kinds of Bieberbach groups of Sol³. We recall from Corollary 8.3^[6,8] that Γ_A and Π_2^{\pm} are Bieberbach groups, and the crystallographic groups $\Pi_1(\mathbf{k})$, $\Pi_4(\mathbf{k})$, $\Pi_5(\mathbf{m}, \mathbf{k}, \mathbf{k}', \mathbf{n})$, $\Pi_7(\mathbf{k})$ and $\Pi_8(\mathbf{k}, \mathbf{m})$ are not Bieberbach groups. The crystallographic groups $\Pi_3(\mathbf{k}, \mathbf{k}')$ and $\Pi_6(\mathbf{k}, \mathbf{k}')$ become Bieberbach groups for a particular choice of \mathbf{k} and \mathbf{k}' . In fact, we may assume

$$M = \begin{bmatrix} -1 & m \\ 0 & 1 \end{bmatrix}$$

where m=0 or 1. If m=0, then $\ell_{11} = \ell_{22}$ and ker(I-M)/im $(I+M) \cong \mathbb{Z}_2$ is generated by $\mathbf{e}_2 = (0,1)^t$. If m = 1, then $\ell_{11} - \ell_{22} = \ell_{21}$ and ker(I-M)/im(I+M) is a trivial group and hence $\mathbf{k} = \mathbf{0}$. It is known in Sect. 3[8] that they are Bieberbach groups if and only if m=0, $\mathbf{k} = \mathbf{e}_2$ and $\mathbf{k'} - \mathbf{k} \neq \mathbf{0}$. Thus they are not Bieberbach groups if and only if

1.
$$m = 1$$
,
2. $m = 0$ and $\mathbf{k} = \mathbf{0}$, or
3. $m = 0$ and $\mathbf{k} = \mathbf{k'} = \mathbf{e}_2$.

Consequently, given $\overline{\Pi}$ with $\overline{\Gamma} = \Gamma_N$ and given $\Gamma = \Gamma_{k,N\mathbf{P}}$, any abstract group Π fitting the diagram (2-2) is a crystallographic group of Sol₁⁴. We can describe the crystallographic groups of Sol₁⁴ as follows: Since $\Gamma_{k,N\mathbf{P}} \subset \Pi$ and Φ has at most two generators, say α, β , we can choose a set of generators $\{\gamma_0, \gamma_1, \gamma_2, \gamma_3, \alpha, \beta\}$ of Π so that Π has relations: the relations for $\Gamma_{k,N\mathbf{P}}$ plus new relations

$$\begin{split} &\alpha\gamma_i\alpha^{-1} = v_i(\gamma_0,\gamma_1,\gamma_2,\gamma_3), \\ &\beta\gamma_i\beta^{-1} = w_i(\gamma_0,\gamma_1,\gamma_2,\gamma_3) \quad (i=0,1,2,3), \\ &r_i = u_i(\gamma_0,\gamma_1,\gamma_2,\gamma_3), \text{ a relation } r_i \, of \, \varPhi. \end{split}$$

Here the words v_i and w_i are of the forms given in Theorem 2.4. In particular,

$$\begin{aligned} \alpha \gamma_0 \alpha^{-1} &= \gamma_0^{\pm 1} \gamma_2^* \gamma_3^* \gamma_4^*, \quad \alpha \gamma_3 \alpha^{-1} &= \gamma_3^{\pm 1}, \\ \beta \gamma_0 \beta^{-1} &= \gamma_0^{\pm 1} \gamma_2^* \gamma_3^* \gamma_4^*, \quad \beta \gamma_3 \beta^{-1} &= \gamma_3^{\pm 1}. \end{aligned}$$

But we cannot choose the integers * in the above relations completely freely. For the details, we refer to reference^[7,9,10].

Acknowledgments

This research was supported by Kumoh National Institute of Technology.

References

- R. Filipkiewicz, "Four dimensional geometries", PhD diss, University of Warick, 1983.
- [2] C. T. C. Wall, "Geometric structures on compact

complex analytic surfaces", Topology, Vol. 25, pp. 119-153, 1986.

- [3] J. H. Jo and J. B. Lee, "Nielsen type numbers and homotopy minimal periods for maps on solvmanifolds with Sol⁴₁-geometry", Fixed Point Theory and Applications, Vol. 175, pp. 1-15, 2015.
- [4] J. B. Lee and X. Zhao, "Nielsen type numbers and homotopy minimal periods for all continuous maps on the 3-nilmanifolds", Sci. China Ser. A Math., Vol. 51, pp. 351-360, 2008.
- [5] J. B. Lee and X. Zhao, "Nielsen type numbers and homotopy minimal periods for maps on the 3-solvmanifolds", Algebraic & Geometric Topology, Vol. 8, pp. 563-580, 2008.
- [6] K. Y. Ha and J. B. Lee, "Crystallographic groups of Sol", Mathematische Nachrichten, Vol. 286, pp. 1614-1667, 2013.

- [7] K. B. Lee and S. Thuong, "Infra-solvmanifolds of Sol⁴,", J. Korean Math. Soc., Vol. 52, pp. 1209-1251, 2015.
- [8] K. Y. Ha and J. B. Lee, "The R_{∞} property for crystallographic groups of Sol", Topol. Appl., Vol. 181, pp. 112-133, 2015.
- [9] K. Y. Ha, J. B. Lee, and P. penninckx, "Formulas for the reidemeister, lefschetz and nielsen coincidence number of maps between infra-nilmanifolds", Fixed Point Theory Applications, Vol. 39, pp. 1-23, 2012.
- [10] P. R. Health, "Groupoids and relations among reidemeister and among nielsen numbers", Topol. Appl., Vol. 181, pp. 3-33, 2015.

114