DOI QR코드

DOI QR Code

Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

  • Arthanari, Srinivasan (Magnesium Technology Innovation Center, School of Materials Science and Engineering, Seoul National University) ;
  • Jang, Jae Cheol (Magnesium Technology Innovation Center, School of Materials Science and Engineering, Seoul National University) ;
  • Shin, Kwang Seon (Magnesium Technology Innovation Center, School of Materials Science and Engineering, Seoul National University)
  • Received : 2016.12.31
  • Accepted : 2017.06.13
  • Published : 2017.06.30

Abstract

In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density ($i_{corr}$) value ($5.969{\mu}A/cm^2$) compared to N15 ($7.387{\mu}A/cm^2$). EIS-Bode plots revealed a higher impedance (${\mid}Z{\mid}$) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer ($R_1$) and charge transfer resistance ($R_{ct}$) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss ($P_W$) and hydrogen volume ($P_H$) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al3Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

Keywords

References

  1. R. S. Rana, R. Purohit, S. Das, International Journal of Scientific and Research (IJSR), 2, 1 (2012).
  2. S. Das, D. P. Mondal, S. Sawla, N. Ramkrishnan, Wear, 264, 47 (2008). https://doi.org/10.1016/j.wear.2007.01.039
  3. T. I. So, H. C. Jung, C. D. Lee, K. S. Shin, Met. Mater. Int., 21, 842 (2015). https://doi.org/10.1007/s12540-015-5247-3
  4. C. D. Lee, K. S. Shin, Mater. Sci. Eng. A, 599, 223 (2014). https://doi.org/10.1016/j.msea.2014.01.091
  5. A. Pithan, H. Koch, Inter. Metalcast., 9, 67 (2015). https://doi.org/10.1007/BF03355603
  6. M. Li, S. Du, Y. Hou, H. Geng, P. Jia, D. Zhao, J. Non-Cryst. Solids, 411, 26 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.11.031
  7. M. Ragab, H. G. Salem, Powder Technol., 222, 108 (2012). https://doi.org/10.1016/j.powtec.2012.02.011
  8. M. Li, S. Du, R. Liu, S. Lu, P. Jia, H. Geng, J. Mol. Liq., 200, 168 (2014). https://doi.org/10.1016/j.molliq.2014.10.007
  9. F. G. Koc, E. Karakulak, R. Yamanoglu, M. Zeren, Proc. 23rd International Conference on Metallurgy and Materials, pp. 1283-1287, Brno, Czech Republic (2014).
  10. J. E. Hanafee, Mod. Cast., 71, 514 (1963).
  11. F. H. Mendez, A. A. Torres, J. G. M. Hernandez, E. T. Rojas, E. R. Rangel, Mater. Sci. Forum, 691, 10 (2011). https://doi.org/10.4028/www.scientific.net/MSF.691.10
  12. B. Peric, Z. Grubac, L. Sablic, Croat. Chem. Acta, 67, 289 (1994).
  13. W. R. Osorio, J. E. Spinelli, C. R. M. Afonso, L. C. Peixoto, A. Garcia, Electrochem. Acta, 69, 371 (2012). https://doi.org/10.1016/j.electacta.2012.03.018
  14. W. R. Osorio, L. C. Peixoto, M. V. Cante, A. Garcia, Electrochem. Acta, 55, 4078 (2010). https://doi.org/10.1016/j.electacta.2010.02.029
  15. J. Wen, H. Cui, N. Wei, X. Song, G. Zhang, C. Wang, J. Alloy. Compd., 695, 2424 (2017). https://doi.org/10.1016/j.jallcom.2016.11.138
  16. A. Srinivasan, K. S. Shin, N. Rajendran, RSC Adv., 6, 49910 (2016). https://doi.org/10.1039/C6RA08478H
  17. T. Dorin, N. Stanford, N. Birbilis, R. K. Gupta, Corros. Sci., 100, 396 (2015). https://doi.org/10.1016/j.corsci.2015.08.017
  18. S. K. Kairy, P. A. Rometsch, C. H. J. Davies, N. Birbilis, Corrosion, 73, 87 (2017). https://doi.org/10.5006/2249
  19. Z. Shi, A. Atrens, Corros. Sci., 53, 226 (2011). https://doi.org/10.1016/j.corsci.2010.09.016
  20. NACE TM0169/G31-12a, Standard guide for laboratory immersion corrosion testing of metals (2012).
  21. S. J. Park, H. C. Jung, K. S. Shin, Mat. Sci. Eng. A, 679, 329 (2017). https://doi.org/10.1016/j.msea.2016.10.046
  22. J. Yang, J. Peng, E. C. Nyberg, F. Pan, Appl. Surf. Sci., 396, 92 (2016).
  23. J. N. Balaraju, A. Srinivasan, G. Yoganandan, V. K. William Grips, K. S. Rajam, Corros. Sci., 53, 4084 (2011). https://doi.org/10.1016/j.corsci.2011.08.016
  24. Z. Zhang, E. Akiyama, Y. Watanabe, Y. Katada, K. Tsuzaki, Corros. Sci., 49, 2962 (2007). https://doi.org/10.1016/j.corsci.2007.02.007
  25. E. Akiyama, Z. Zhang, Y. Watanabe, K. Tsuzaki, J. Solid State Electr., 13, 277 (2009). https://doi.org/10.1007/s10008-007-0496-9