DOI QR코드

DOI QR Code

토목시설물에 대한 BIM 기반 가상건설 장비 시뮬레이션 시스템 개발

Development of Virtual Construction Equipment Simulation System Based on BIM for Civil Engineering Project

  • 투고 : 2017.03.08
  • 심사 : 2017.03.16
  • 발행 : 2017.06.30

초록

토목시설물 건설사업에 BIM(building information modeling)이 적극적으로 도입되면서 시설물의 생애주기 동안의 활용도를 극대화할 수 있는 방안이 모색되고 있으며, 그 중, 시설물 공사 중 건설장비의 동적 거동을 반영한 검토 사례는 드물고 관련 기술 수준도 낮은 상황이다. 본 연구에서는 BIM 기반으로 구성된 가상현장 내에서 동적인 가상건설 장비 모델을 이용하여 공사단계에서 발생하는 장비운용의 안전성과 효율성을 검토할 수 있는 시뮬레이션 시스템을 개발하고 이를 실제 토목 현장에 적용하여 그 효용성을 분석하였다. 개발된 시뮬레이션 시스템이 건설장비에 대한 효과적인 3D 라이브러리 구축을 통해 공사관리자가 최적의 장비를 선정하고 경제적인 공사를 실현하기 위한 계획수립을 지원할 뿐 아니라 안전한 공사가 수행되도록 다각도의 분석을 가능케 해준다는 것을 확인할 수 있었다.

BIM(building information modeling) has been actively applied to construction industries and to maximize its application through the life cycle of structure, various relevant technologies have been proposed. In particular, 4D sequencing management and 5D cost-related management were introduced as an improved version of the design review and interface control by 3D information design. On the other hand, the virtual construction using virtual construction equipment can sophisticatedly handle capacity, dynamic movement, collision boundaries of actual construction machines but it still stays at a low level in a technical sense. In this study, simulation systems based on BIM involving virtual construction equipment have been developed; then it is applied to the actual construction project to evaluate the safety and efficiency of construction equipments. It was confirmed that the simulation systems can be utilized to construct virtual construction site by using an effective 3D library of construction equipment and can plays a key role to secure construction safety and economic feasibility. Specifically, the simulation system are very useful for decision making by construction managers to select the optimum equipment and construction method with a better understanding for safety and cost-saving.

키워드

참고문헌

  1. Park, C.-S., Kim, H.-J. (2013) A Framework for Construction Safety Management and Visualization System, Autom. Constr., 33, pp.95-103. https://doi.org/10.1016/j.autcon.2012.09.012
  2. Demag (2016) AC 250-5 - All Terrain Crane 250T Capacity Class Brochure, Demag.
  3. Ding, L., Zhou, Y., Akinci, G. (2014) Building Information Modeling (BIM) Application Framework: The Process of Expanding from 3D to Computable nD, Autom. Constr., 46, pp.82-93.
  4. AlBahnassi, H., Hammad, A. (2012) Near Real-Time Motion Planning and Simulation of Cranes in Construction: Framework and System Architecture, J. Comput. Civ. Eng., 26, pp.54-63. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000123
  5. Jeon, H.W., Jung, I.S., Lee, C.S. (2013) Risk Assessment for Reduction Safety Accident caused by Construction Machinery, J. Korean Soc. Saf., 28(6), pp.64-72. https://doi.org/10.14346/JKOSOS.2013.28.6.064
  6. Kim, S.H., Lee, S.H., Nam, S.H., Sun, O.Y. (2011) A Study on the Construction Management Method based on BIM for Civil Engineering Project, J. Comput. Struct. Eng. Inst. Korea, 24(4), pp.463-469.
  7. Kim, H.S., Moon, H.S., Choi, G.Y., Kim, C.H., Kang, L.S. (2012) Development of BIM Functions and System for Constrcution Project Through Project Life Cycle - Focusing on Bridge Construction Project, Korean J. Constr. Eng. & Manag., 13(2), pp.11-24. https://doi.org/10.6106/KJCEM.2012.13.2.011
  8. Ministry of Employment and Labor (2016) The Analysis of Industrial Accident.
  9. Moon, H., Dawood, N., Kang, L. (2014) Development of Workspace Conflict Visualization System using 4D Object of Work Schedule, Adv. Eng. Inform., 28, pp.50-65. https://doi.org/10.1016/j.aei.2013.12.001
  10. Sampaio, A.Z., Martins, O.P. (2014) The Application of Virtual Reality Technology in the Construction of Bridge : The Cantilever and Incremental Launching Methods. Autom. Constr., 37, pp.58-67. https://doi.org/10.1016/j.autcon.2013.10.015
  11. Tantisevi, K., Akinci, B. (2007) Automated Generation of Workspace Requirements of Mobile Crane Operation to Support Conflict Detection, Autom. Constr., 16(3), pp.262-276. https://doi.org/10.1016/j.autcon.2006.05.007
  12. Hung, W.-H., Liu, C.-W., Liang, C.-J. Kang, S.-C. (2016) Strategies to Accelerate the Computation of Erection Path for Construction Cranes, Autom. Constr., 62, pp.1-13. https://doi.org/10.1016/j.autcon.2015.10.008
  13. Wu, Y., Kim, H., Kim, C., Han, S. (2010) Object Recognition in Construction-Site Images Using 3D CAD-Based Filtering J. Comput. Civil Eng., pp.56-64.