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Abstract—In order to reduce the size of frame 
memory or bus bandwidth, frame memory 
compression (FMC) recompresses reconstructed or 
reference frames of video codecs. This paper proposes 
a novel FMC design based on discrete wavelet 
transform (DWT) - set partitioning in hierarchical 
trees (SPIHT), which supports fine-scalable 
throughput and is area-efficient. In the proposed 
design, multi-cores with small block sizes are used in 
parallel instead of a single core with a large block size. 
In addition, an appropriate pipelining schedule is 
proposed. Compared to the previous design, the 
proposed design achieves the processing speed which 
is closer to the target system speed, and therefore it is 
more efficient in hardware utilization. In addition, a 
scheme in which two passes of SPIHT are merged into 
one pass called merged refinement pass (MRP) is 
proposed. As the number of shifters decreases and the 
bit-width of remained shifters is reduced, the size of 
SPIHT hardware significantly decreases. The 
proposed FMC encoder and decoder designs achieve 
the throughputs of 4,448 and 4,000 Mpixels/s, 
respectively, and their gate counts are 76.5K and 
107.8K. When the proposed design is applied to high 
efficiency video codec (HEVC), it achieves 1.96% 
lower average BDBR and 0.05 dB higher average 
BDPSNR than the previous FMC design.    
 
Index Terms—Embedded compression, image 

compression, VLSI implementation, high efficiency 
video codec (HEVC), parallel architectures    

I. INTRODUCTION 

Video codecs store reconstructed or reference frames 
into external frame memory to execute an inter 
prediction which is based on temporal correlation. 
Typically, video codecs access the frame data through a 
bus. The stored data are often recompressed, and thereby 
reducing the frame memory size or bus bandwidth. This 
method is called frame memory compression (FMC) [1-
10]. FMC reduces frame memory access costs but 
requires an additional hardware. Furthermore, low 
read/write latency is demanded not to affect the 
processing speed of video codecs. Therefore, unlike 
video codecs such as high efficiency video codec 
(HEVC), low computation is important rather than high 
coding efficiency in FMC. Therefore, temporal 
correlation is not exploited and spatial correlation is used 
restrictedly.  

Recently, the resolution size is exceeding 4K UHD 
(3840×2160) and video codecs require very high-
throughput. The throughput of FMC is increasing as well. 
Until now, various FMC algorithms have been proposed. 
Lee et al. propose a differential pulse code modulation 
(DPCM) - variable length coding (VLC)-based FMC 
algorithm [1]. However, this algorithm generates the 
bitstream with a variable length. In addition, the 
bitstream has dependence inside, and therefore the high-
throughput is not supported. To solve this problem, FMC 
algorithms without VLC have been studied. Kim et al. 
propose prediction and coding methods which are 
effective in hardware implementation [3]. The prediction 
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method called hierarchical average and copy prediction 
(HACP) offers high prediction accuracy using diverse 
average values within a block. Moreover, the coding 
method called significant bit truncation (SBT) enables 
the number of the bits generated within a block to be 
calculated in advance, leading to the high-throughput. 
Guo et al. propose a prediction method called multi-
mode DPCM and averaging (MDA) which effectively 
compresses various images. In addition, a coding method 
called semi-fixed length (SFL) is proposed to predict the 
bitstream length in advance, thereby achieving very high-
throughput [6]. Despite the high-throughput, HACP-SBT 
and MDA-SFL only support lossless coding, and 
therefore have limited applications. To support lossy 
coding, the quantization method in [1] can be applied to 
those algorithms. However, HACP-SBT and MDA-SFL 
insert dummy bits to make the bitstream length 
foreknowable. As the target compression ratio (CR) 
increases, the ratio of those dummy bits in the bitstream 
increases, resulting in decrease in coding efficiency.  

In case that the CR and image quality are the most 
important factors to consider when choosing an FMC 
algorithm, lossless coding is most appropriate. It is 
difficult to assure that the same FMC is used for the 
video encoder and decoder. Therefore, the FMC, which 
is lossy coding, may make a reference frame mismatch 
between encoding and decoding, which is continuously 
accumulated. For this reason, HACP-SBT and MDA-
SFL, which are used as FMC in video codecs, only 
consider lossless coding. However, lossless coding 
algorithms are not suitable for hardware systems. Since 
the length of the bitstream generated by the lossless 
coding is variable, the frame memory size and bandwidth 
vary as well. Furthermore, random access on the 
reference frame required by video codecs is difficult. For 
example, since the bitstream having a variable length is 
sequentially stored in frame memory, it is difficult to 
calculate an initial memory address for each search range. 
If the bitstream is discontinuously stored in frame 
memory to support easy random access, the bus 
utilization to access the frame memory is significantly 
reduced. For example, dummy bits are inserted into the 
data transfer and the burst mode of the bus protocol is not 
fully utilized. This reduces the compression gain in the 
bus bandwidth utilization.   

Discrete wavelet transform (DWT) - set partitioning in 

hierarchical trees (SPIHT) is one of lossy coding 
algorithms [11]. The DWT-SPIHT achieves an accurate 
target CR and supports lossless coding as well. In 
addition, this algorithm is based on bit-plane coding and 
effective in coding efficiency due to errors occurring in 
lower bit-planes. However, the processing speed is slow 
due to the dynamic processing order. In addition, existing 
dependence inside bitstream and each pass interferes 
with the speed. To solve this problem, various methods 
including hardware architectures have been studied [5, 7, 
12-15]. Kim et al. propose an SPIHT hardware design of 
which throughput is about 1 bit-plane per cycle [7]. In 
this design, the processing cycle is fixed regardless of the 
block size, and therefore the throughput can be 
continuously improved by increasing the block size. 
However, this scalable throughput has some problems 
with hardware implementation. First, a 2D DWT is 
composed of two 1D DWTs whose transform directions 
are horizontal and vertical. When the horizontal 
transform ends, the vertical transform starts. Therefore, 
as the block size increases, latency and temporal memory 
cost increase. Second, there is a stage of transposing 
coefficients to bit-planes between DWT and SPIHT, 
which is implemented in memory elements. As the block 
size increases, the size of the memory element 
proportionally increases. Third, when the height and 
width of a square block are doubled, the processing 
speed increases four times. Therefore, achieving the 
target system speed is difficult and the hardware 
utilization decreases. Fourth, as the block size increases, 
the number of bits to be coded in each pass of SPIHT 
increases with each cycle. Consequently, the burden on 
the packer module to shift and merge the generated bits 
increases. Likewise, the complexity of the parser module 
increases.  

This paper proposes a DWT-SPIHT-based FMC 
design that supports fine-scalable throughput and area-
efficiency. Contributions are set apart from previous 
designs as follows. First, an SPIHT design that finely 
increases throughput is proposed. To this end, multi-
cores with small block sizes are used in parallel instead 
of the single core with a large block size. An appropriate 
pipelining schedule is also proposed. Second, the number 
of the passes in SPIHT is decreased to reduce the 
hardware overhead that is increased by the multi-cores. 
Finally, the proposed FMC design is integrated into the 



448 SUNWOONG KIM et al : FINE-SCALABLE SPIHT HARDWARE DESIGN FOR FRAME MEMORY COMPRESSION IN VIDEO … 

 

HEVC encoder system with the AXI bus, and 
recompresses reconstructed/reference frames. Considering 
FMC coding efficiency and hardware implementation 
advantages, it is a reasonable solution to use a lossy 
coding algorithm in systems where the video codec is 
connected to external frame memory through a bus. The 
inconsistency between the encoder and the decoder, 
which is caused by the lossy coding algorithm, is 
mitigated by using periodic intra frames.  

The rest of this paper is organized as follows. In 
Section II, the previous DWT-SPIHT algorithm is 
introduced. In Sections III, a DWT-SPIHT design which 
shows fine-scalable throughput is proposed. In Section 
IV, an integration with the AXI-based HEVC encoder 
hardware is presented. The implementation results and 
compression performances of the proposed FMC design 
are presented in Section V, and Section VI concludes the 
paper. 

II. DWT-SPIHT 

This section presents the DWT-SPIHT algorithm that 
is the basis of the proposed algorithm. The DWT-SPIHT 
algorithm which is one of transform-based coding 
algorithms encodes input pictures as shown in Fig. 1. 
First of all, it executes 2D DWT on the input picture. The 
2D DWT is implemented by using vertical and horizontal 
1D DWTs. Wavelet transformed coefficients are 
temporarily stored in memory and then transposed into 
bit-plane units. The transposed bit-planes are transferred 
to SPIHT from the most significant bit-plane (MSB) to 
the least significant bit-plane (LSB). The bit-planes have 
a spatial-orientated tree (SOT) data structure in which 
coefficients that have the same spatial orientation but 

different frequency band levels are connected. It is likely 
that the higher band level is insignificant if the 
corresponding lower band level is insignificant. This is 
called the zero-tree hypothesis. Based on this hypothesis, 
SPIHT represents a set which does not have any 
significant bit ‘1’ by symbol ‘0’. This process, called the 
significance test, is shown in (1). 
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In (1), T and ( )nS ×  represent a set to be tested and the 

significance test on the n-th bit-plane, respectively. In 

addition, ,i jc  represents a coefficient at location (i, j) in 

T and the threshold is set by 2n  when the n-th bit-plane 
is coded. If any of coefficients in T is larger than or equal 
to the threshold, the significance test outputs ‘1’. The 
tested set is then divided into several sub-sets and those 
sub-sets are tested again. The coding efficiency of SPIHT 
is depending on how many sets are represented by the 
symbol ‘0’. SPIHT terminates when all the input picture 
data are coded or the bitstream length meets the target bit 
length (TBL). Therefore, this algorithm can achieve the 
target CR exactly. Moreover, as coding proceeds from 
MSB to LSB, errors occur in lower bit-planes. Therefore, 
SPIHT shows high coding efficiency among various 
lossy coding algorithms. Despite its many advantages, 
SPIHT has a problem of slow processing speed. This is 
because the conventional SPIHT codes data in dynamic 
order. To solve this problem, SPIHT algorithms which 
code data in fixed order have been proposed [5, 7, 12-15]. 
In these algorithms, coding efficiency is slightly reduced 
but processing speed is significantly improved.  

Up to our knowledge, the SPIHT hardware design 
which shows the highest throughput in both of encoder 
and decoder is the design in [7]. In this design, SPIHT is 
composed of three passes: sorting pass (SP), first 
refinement pass (FRP), and refinement pass (RP). 
Originally, the parallel processing in SPIHT is restricted 
because of two dependences: The first exists between 
SPs of different frequency band levels and the second 
exists between SP and FRP of the same frequency band 
level. Kim et al. propose a pipelining schedule to avoid 
those dependences, and therefore all passes are processed 
in parallel. As a result, the encoder and decoder achieve 

 

Fig. 1. DWT-SPIHT algorithm. 
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high-throughput of about one bit-plane per cycle. Fig. 2 
shows the pipelining schedule of the encoder design in 
[7] of which the decomposition level is two. In this figure, 
vertical and horizontal axes represent passes in each band 
and execution time, respectively. In addition, one 
rectangle and the number inside represent one cycle time 
and the bit-plane number, respectively. During the first 
two cycles, represented in white color, all passes do not 
work in parallel to avoid the dependences. However, all 
passes work in parallel from the third cycle, which is 
represented in light gray color. The delayed bit-planes 
are represented in dark gray color. As this design 
processes about one bit-plane per cycle, regardless of the 
block size, throughput can be improved by increasing the 
block size. However, the required hardware resources, 
such as buffers, significantly increase as the block size 
increases. Moreover, hardware utilization may decrease 
because a fine control of throughput is difficult. 
Therefore, it is required to divide one large block into 
several small blocks and process them in parallel to 
achieve an area-efficient and high-throughput design. 

III. THE PROPOSED SCHEMES FOR FINE-
SCALABLE SPIHT HARDWARE DESIGN 

This section proposes a fine-scalable SPIHT design for 
area-efficient hardware implementation. 

 
1. Multi-core SPIHT 

 
The parallel and pipelined method in [7] enables the 

number of processing cycles to be fixed regardless of the 
block size. Therefore, as the block size increases, the 
number of generated bits per cycle increases, 
consequently resulting in high-throughput. However, the 
hardware utilization may greatly decrease depending on 
the target speed or the incoming input data speed. Fig. 3 
shows an example of execution in [7] in which FMC is 
connected to a bus with 64 bit-width and the DWT 
decomposition level is set by two. In this figure, input 
data come into the FMC with the target processing speed 
of 8 pixels/cycle in the burst mode. Fig. 3(a) shows the 
execution of an 8×8 block while Fig. 3(b) shows that on 
a 16×16 block. Gray and white squares in Fig. 3 
represent sign and magnitude bit-planes, respectively, 
and dotted squares represent the delayed bit-planes 

presented in Fig. 2. In Fig. 3(a), input pixels with 8 bit-
width are transformed into wavelet coefficients in the 2D 
DWT module and then transposed to 10 bit-planes in the 
transpose module. The transposed bit-planes are 
transferred to the 2D SPIHT modules. As shown in Fig. 2, 
the number of cycles to encode a single 8×8 block is 12 
because delayed bit-planes, corresponded to the initial 
delayed two cycles, are added to avoid dependences. 
Therefore, the SPIHT hardware design shows throughput 
of 5.33 (=64/12) pixels/cycle when the block size used in 
FMC is 8×8, which is represented by a triangle mark in 
Fig. 3(c). In this case, the processing speed of SPIHT is 
slower than the target speed of 8 pixels/cycle which is 
represented by a square mark, and therefore the SPIHT 
design cannot work on the fly. Typically, the coding unit 
is a square-shaped block and its height and width values 
are determined in power of 2. When the height and width 
of an 8×8 block are doubled to increase the speed of 

 

Fig. 2. Pipelining schedule of the high-throughput SPIHT 
encoder in [7] of which decomposition level is two. 

 

  

(a) 
 

(b) 
 

 

(c) 

Fig. 3. Relationship between block size and throughput when 
the DWT decomposition level is two (a) processing an 8×8 
block, (b) processing a 16×16 block, (c) target speed and 
processing speeds of (a) and (b). 
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SPIHT, the block size becomes 16×16. As shown in Fig. 
3(b), the speed of SPIHT for a 16×16 block is 21.33 
(=256/12) pixels/cycle, which is represented by a cross 
mark in Fig. 3(c). This speed is 2.67 times faster than the 
target speed. It leads to low hardware utilization because 
numerous hardware resources are exploited for the 
unnecessary speedup. If two 8×8 blocks are processed in 
parallel and pipelined manner, 128 (=64×2) pixels are 
processed in 12 cycles. In this case, the SPIHT design 
has the throughput of 10.67 pixels/cycle, which is 
represented by a circle mark and becomes closer to the 
target speed of 8-pixels/cycle. As a result, this design is 
more efficient in hardware utilization, achieving the 
required processing speed. 

Fig. 4(a) shows the block diagram of the proposed 
encoder design with two cores and the DWT 
decomposition level of 2. This design is composed of 2D 
DWT, transpose, 2D SPIHT0, 2D SPIHT1, and output 
multiplexer modules. The 2D SPIHT0 and 2D SPIHT1 
modules process even and odd 8×8 blocks, respectively. 
Fig. 4(b) shows the timing diagram of this design. In this 
figure, the horizontal axis and the number in the 
rectangle represent execution time and the block number, 
respectively. Five stages shown in the vertical axis 
process coding blocks in pipelined manner. When input 
8×8 block data come into the proposed encoder design, 
the 2D DWT module transforms the data into wavelet 
coefficients on the fly. The 2D DWT module transforms 
each coding block during one pipe time. The generated 
wavelet coefficients are then transposed to bit-planes in 
the transpose module. Note that the proposed design 

utilizes single 2D DWT and transpose modules, although 
multi-core 2D SPIHT modules are used. Therefore, the 
overall hardware cost does not increase proportionally to 
the number of 2D SPIHT cores. When the pipe time for 
the transpose stage is finished, the 2D SPIHT module 
starts coding. The proposed SPIHT design is based on 
the parallel and pipelined method in [7]. As shown in Fig. 
3, a single SPIHT module processes one bit-plane per 
cycle and shows the throughput of about 5.33 pixels/ 
cycle for an 8×8 block, which is smaller than the target 
speed of 8 pixels/cycle. Therefore, bit-planes of input 
8×8 block data are encoded during 2 pipe times. During 
the first pipe time, upper 6 bit-planes are encoded. On the 
other hand, lower 4 bit-planes and 2 delayed bit-planes 
are coded during the second pipe time. Therefore, the 
upper 6 bit-planes from the transpose module are directly 
transferred to the 2D SPIHT module, whereas the lower 
4 bit-planes are stored in internal memory, denoted as a 
bit-plane buffer, and then transferred to the 2D SPIHT 
core at the next pipe time. In the proposed encoder 
design with dual-core SPIHT, two cores encode even and 
odd blocks in parallel. The bits generated in those cores 
are packed to the continuous bitstream in the packer 
module. As shown in Fig. 2, a single core is composed of 
many passes, and therefore the packer module includes 
logics to shift and merge the generated bits. Multi-cores 
simultaneously generate the packed bitstream. However, 
the bitstream of one core is only outputted through the 
output multiplexer because the completion times of the 
two cores are different. The generated bitstream is 
outputted after two pipe times in 2D SPIHT modules. 
The length of the outputted bitstream varies depending 
on the target CR.  

Fig. 5 shows the processing orders of the proposed 
design using dual-cores and quad-cores with the block 
size of 8×8 and the DWT decomposition level of 2. The 
number in the rectangle represents the bit-plane number. 
Rectangles with numbers of -1 and -2 represent the 
delayed bit-planes, and ‘B’ represents a bubble cycle. Fig. 
5(a) shows the processing order when dual-cores are 
used and eight pixels are inputted per cycle through a 64 
bit-width bus. In this case, one pipe time is composed of 
eight cycles. As shown in this figure, during six cycles of 
the first pipe time, upper six bit-planes of the block0 are 
encoded in the core0. During six cycles of the next pipe 
time, lower four bit-planes and two delayed bit-planes of 

Core Packer

Input 
Pixels

Output 
Bitstream

2D 
DWT Transpose

Bit-plane 
Buffer

6-MSB

4-LSB

2D SPIHT0 (Even 8x8 Block)

Core PackerBit-plane 
Buffer

6-MSB

4-LSB

2D SPIHT1 (Odd 8x8 Block)

 

(a) 
 

 

(b) 

Fig. 4. The proposed encoder design with dual-core SPIHTs (a) 
block diagram, (b) timing diagram. 
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the block0 are coded in the core0. At the same time, six 
bit-planes of the block1 are encoded in the core1. In 
other words, two blocks are simultaneously encoded 
since the first pipe time. The proposed scheme can be 
used for more cores. Fig. 5(b) shows the processing order 
when quad-cores are used. This situation occurs when 16 
pixels come through a 128 bit-width bus per cycle and 
one pipe time for a single 8×8 block is composed of 4 
cycles. During the first three pipe times, all cores do not 
work in parallel. However, quad-cores encode respective 
blocks in parallel after the first three pipe times as shown 
in Fig. 5(b).  

Fig. 6(a) shows the block diagram of the proposed 
decoder design using the dual-core SPIHT. The decoder 
executes the opposite operation of the encoder. The 
design is composed of two inverse SPIHT modules, 2D 
iSPIHT0 and 2D iSPIHT1, the 2D inverse DWT module, 
and the output multiplexer module. The dual-core 2D 
iSPIHT modules, in common with the dual-core 2D 
SPIHT modules, work in parallel. The 2D iSPIHT 
module is composed of the pre-length calculation and 
initial address generator, which calculate bitstream 
addresses for each pass, the parser which uses those 
addresses and parses the bitstream, and the core which 
decodes the bitstream. In this module, about one bit-
plane is processed per cycle. Reconstructed wavelet 
coefficients are stored in the coefficient buffer and then 
transferred to the 2D iDWT module. The 2D iDWT 
module executes the inverse DWT on the reconstructed 
wavelet coefficients and the final pixel data are 

transferred to outside. Fig. 6(b) shows the timing 
schedule of the FMC decoder. In this figure, the 
horizontal axis and numbers in rectangles represent 
execution time and block numbers, respectively. One 2D 
iSPIHT module decodes a single 8×8 block during two 
pipe times and two 2D iSPIHT modules work in parallel. 
When the input bitstream for a single 8×8 block read is 
completed, the 2D iSPIHT module starts decoding at the 
next pipe time. The input bitstreams for even and odd 
blocks are alternately transferred to the 2D iSPIHT0 and 
2D iSPIHT1 modules. After two pipe times, the wavelet 
coefficients are reconstructed. As completion times of 
two 2D iSPIHT modules are different, the reconstructed 
coefficients are, in turn, transferred to the 2D iDWT 
module through the output multiplexer. In the 2D iDWT 
module, each 8×8 block is processed during one pipe 
time. The final data from the 2D iDWT module are 
continuously outputted to outside.  

 
2. Pass Reduction Scheme 

 
The packer of encoder and the parser of decoder use 

shifters to pack and parse the bits, respectively. As the 
number of passes working in parallel increases, that of 
shifters used in packer and parser modules increases as 
well, which has a significant impact on the total 
hardware size. For example, a block with the 
decomposition level of 2 has seven bands, LL2, LH2, 
HL2, HH2, LH1, HL1, and HH1. The LL2 band has only 

 

(a) 
 

 

(b) 

Fig. 5. Encoding process depending on the number of 2D 
SPIHT cores (a) dual-cores, (b) quad-cores. 

 
 

 

(a) 
 

 

(b) 

Fig. 6. The proposed decoder design with dual-core SPIHTs (a) 
block diagram, (b) timing diagram. 
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one pass, RP, while other six bands have three passes, SP, 
FRP, and RP. Therefore, nineteen passes operate in 
parallel in the FMC encoder. On the other hand, the FMC 
decoder has thirty-two passes which operate in parallel 
because the passes for sign bit decoding are added (RP of 
the LL2 band, and RP and FRP of other six-bands) [7]. 
Fig. 7 shows an example of the packing operation in the 
previous encoder design. Although this design 
simultaneously packs bits generated in nineteen passes, 
only six passes are shown in this example to reduce the 
space. When the block size is 8×8, the maximum number 
of generated bits in HL2 RP, HL2 FRP, HL2 SP, HL1 
RP, HL1 FRP, and HL1 SP are 4, 4, 1, 16, 16, and 5, 
respectively. Note that sign bits are not considered in this 
example. For packing bits in the HL1 band, bits in HL1 
FRP are shifted by the number of bits in HL1 RP. Then, 
bits in HL1 SP are shifted by the total number of bits in 
HL1 RP and HL1 FRP. By using a bit-wise OR operator, 
all bits in the HL1 band are packed. Suppose that {1, 0, 1, 
1}, {1, 1, 0, 1}, and {1, 0} are generated in RP, FRP, and 
SP in the HL1 band, respectively. As the maximum 
number of bits in the HL1 band is 37 (=16+16+5), the 
bit-width of bits generated in respective passes is 
extended to 37. For example, bits in RP of the HL1 band 
become {1, 0, 1, 1, 0, …, 0}. As four bits are generated 
in HL1 RP, the bits in HL1 FRP are right-shifted by 4 
and become {0, 0, 0, 0, 1, 1, 0, 1, 0, …, 0}. The bits in 
HL1 SP are right-shifted by 8 because total eight bits are 
generated in HL1 RP and HL1 FRP, and therefore the set 
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …, 0} is generated. The 37 
bit-sized three sets are merged by using an OR operator 
and the packed bitstream, {1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, …, 
0}, is generated. By using the same manner, bits in the 
HL2 band are packed as well. When packing processes 

for the HL1 and HL2 bands are finished, the bit-width of 
the packed bits is extended to 46. The generated bits in 
the HL1 band are right-shifted by the number of bits in 
the HL2 band, those two 46 bit-sized sets are then 
merged by using an OR operator. In the same manner, 
bits generated in all passes are packed. However, as the 
stage goes by, the bit size to merge increases. To this end, 
shifters with a large bit-width are required and therefore 
numerous hardware logics are exploited. Note that 
packer and parser modules of the SPIHT hardware 
design in [7] have 36.6% and 22.7% of encoder and 
decoder gate counts, respectively. Therefore, to reduce 
the total hardware cost, it is critical to reduce the 
numbers of passes and shifters.  

This paper proposes a scheme to merge RP and FRP 
into a single pass called merged refinement pass (MRP) 
to reduce the number of passes. Previous RP and FRP 
execute respective functions on pixels with different 
present states. However, there is something that those 
two passes have in common. First, RP and FPR use the 
same threshold as shown in Fig. 2. Second, both of them 
apply the significance test on each pixel, not on a set. As 
one pixel is only tested in one pass depending on the 
present state, RP and FRP for the pixel do not work 
simultaneously. Therefore, those two passes are merged 
and the operation is determined depending on the present 
state. By using the proposed scheme, the number of 
encoder passes decreases from 19 to 13, and that of 
decoder passes decreases from 32 to 20. 

Fig. 8 shows the modified logics when the proposed 
scheme is applied to the example in Fig. 7. As the 
number of passes decreases to two-thirds, that of shifters 
decreases as well. In addition, bit-widths of remained 
shifters are reduced. As a result, the size of SPIHT 

 

Fig. 7. Packing of HL coefficients in the previous method in 
which the size of block is 8×8 and the DWT decomposition 
level is two. 

 
 

 

Fig. 8. Packing of HL coefficients in the proposed method. 
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hardware logics significantly decreases. Especially, the 
decrease of hardware logics is proportional to the number 
of multi-SPIHT cores. The proposed pass reduction 
scheme does not influence coding efficiency. However, 
the logic path in one pass becomes longer because the 
MRP logic is more complex than the RP or FRP logic. 
However, this path is not the critical path of the overall 
system, but rather the critical path, which is in the packer 
module, becomes shorter.  

IV. INTEGRATION WITH HEVC ENCODER 

This section presents the overall system when the 
proposed FMC hardware design is integrated with the 
AXI-based HEVC encoder. The proposed system 
compresses YUV 4:2:0 data with 8 bit-width. The bit-
width of the AXI bus connected to the FMC encoder and 
decoder is 64 and the maximum burst length (BL) is 16. 
Fig. 9 shows the block diagram of the overall 
architecture. The FMC encoder and decoder are located 
between the HEVC encoder and the AXI bus, and 
communicate with the AXI bus using the same protocol 
which is previously utilized. The FMC encoder encodes 
data when the HEVC writes reconstructed frames to 
frame memory. On the other hand, the FMC decoder 
decodes the bitstream when the HEVC reads reference 
frames from the frame memory.  

The FMC encoder receives 64 bits per cycle from the 
HEVC encoder. As the AXI bus uses a burst transferring 
protocol, 64 bits×BL-sized input data are continuous. 
The bitstream generated by the FMC encoder is 
transferred to frame memory using the BL determined 
depending on the target CR of the FMC. Fig. 10 shows 
examples of the changed BLs. In this example, the 
HEVC encoder sends 16 BL-sized data to the FMC 
encoder. As shown in Fig. 10(a), the 16 BL-sized data 

correspond with two 8×8 block Y data. The CR is 
defined as 

 

 
   (1 ) 100 .

   
Total bits after compressionCR

Total bits before compression
= - ´  (2) 

 
Fig. 10(b) shows BLs when the encoded bitstream is 

transferred from the FMC encoder to frame memory 
through the AXI bus. BLs corresponding to target CRs of 
25.0%, 37.5%, and 50.0% are 12, 10, and 8, respectively. 
It means that the bandwidth on the AXI bus, to which 
other IPs are also connected, is reduced. Note that 
compressed data may reduce the size of frame memory 
as well because the size of the encoded bitstream is fixed. 
When the FMC decoder receives read requests with the 
BL of 16 from the HEVC encoder, it transfers read 
requests with the changed BL depending on the target 
CR to frame memory. The bitstream from frame memory 
is decoded by the FMC decoder, and the decoded pixels 
are transferred to the HEVC encoder using the original 
BL, 16. 

V. EXPERIMENTAL RESULTS 

This section shows hardware implementation results of 
the proposed design. In addition, compression 
performance results are presented when the proposed 
design is integrated with HEVC. 

 
1. Hardware Implementation 

 
The proposed design codes an 8×8 block and the DWT 

decomposition level is set by 2. Input eight pixels come 
into the FMC encoder per cycle and the dual-cores 

 

Fig. 9. Overall architecture. 
 

 

(a) 
 

 

(b) 

Fig. 10. Burst length of the single transfer (a) between FMC 
and HEVC, (b) between AXI bus and FMC. 
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presented in Section III.1 are used. The proposed 
hardware design is targeted for ASIC implementation. To 
this end, the Verilog model is simulated and synthesized 
with the 65 nm TSMC technology library but without the 
place and route operations. Table 1 shows the maximum 
throughput results of the proposed hardware design. The 
first column represents respective FMC modules, and the 
second and third columns represent the maximum 
frequency and the maximum throughput, respectively. 
The maximum frequency of the FMC encoder is 556 
MHz. As 64 pixels are processed in each pipe stage 
during 8 cycles, the maximum throughput is 4,448 
Mpixels/s, which is shown in the second row of Table 1. 
However, when the 2D SPIHT hardware is only 
considered, 64 pixels are processed during 12 cycles and 
dual-cores are used. Therefore, the maximum throughput 
is 5,931 Mpixels/s as shown in the third row of Table 1. 
In the FMC decoder, the maximum frequency is 500 
MHz, and therefore the maximum throughput is 4,000 
Mpixels/s as shown in the fourth row. The processing 
cycle in the 2D iSPIHT is one cycle longer than that in 
the 2D SPIHT because the sign bit decoding is delayed 
[7]. Therefore, the maximum throughput of the dual-core 
2D iSPIHT is 4,923 Mpixels/s, which is shown in the last 
row of Table 1.  

Table 2 shows gate count and memory size results of 
the proposed hardware design. The gate count of the 
proposed encoder hardware is 76.5K, which accounts for 

41.51% of the total FMC gate count. The gate count of 
the single-core of 2D SPIHT is 25.1K and that of the 
dual-core hardware accounts for 65.62% of the overall 
encoder gate count. All internal memory in the encoder 
hardware is used for the bit-plane buffer. Along with the 
core, two same 256-bit memory elements are exploited 
for dual encoding. The gate count of the proposed 
decoder hardware is 107.8K, which accounts for 58.49% 
of the total FMC gate count. The reason why the gate 
count of the decoder is larger than that of the encoder is 
that the complexity of the 2D iDWT module is higher 
than that of the 2D DWT module and the number of 
passes in the 2D iSPIHT is larger than that in the 2D 
SPIHT. The proposed decoder uses dual-cores and the 
gate count of these modules accounts for 79.41% of that 
of the overall decoder hardware. As all buffers in the 
decoder hardware are implemented in registers, the total 
memory size of the decoder hardware is zero.  

The gate count change results by the pass reduction 
scheme presented in Section III.2 is shown in Table 3. 
The second column shows gate count results when the 
proposed pass reduction scheme is not used (pass 
organization in [7] is used), while the third column 
shows gate count results when the proposed pass 
reduction scheme is used. In the single-core of 2D 
SPIHT, the proposed scheme reduces 4.6K gates which 
account for 15.49%. Especially, 2.8K gates are reduced 
in the packer module in which many shifters with a large 
bit-width are used. On the other hand, 6.3K gates which 
account for 12.83% are reduced in the single-core of 2D 
iSPIHT by the proposed scheme. In the parser module 
which is included in the single-core of 2D iSPIHT, 3.0K 
gates are reduced.  

Table 4 shows hardware implementation results of the 
‘16×8-single’ design, which is based on Kim et al. [7] 
and codes a 16×8 block, and the proposed design, which 
codes two 8×8 blocks using dual-cores. For fair 
comparison depending on block sizes, the proposed pass 

Table 1. Maximum throughput of the proposed SPIHT 
hardware design 

Module Maximum frequency 
(MHz) 

Throughput 
(Mpixels/s) 

Total 556 4,448 Encoder 
2D SPIHT Only 556 5,931 

Total 500 4,000 Decoder 
2D iSPIHT Only 500 4,923 

 
Table 2. Gate count and memory size of the proposed hardware 
design 

Module Gate count 
(Kgate) 

Memory  
(bit) 

Total 184.3 512 
Total 76.5 512 

Encoder 2D DWT 
Transpose (Bit-plane Buffer) 

2D SPIHT 

12.5 
13.8 
25.1 

- 
(64×4)×2 

- 
Total 107.8 0 

Decoder 2D iDWT 
2D iSPIHT 

22.2 
42.8 

- 
- 

 
 

Table 3. Gate count change by the pass reduction scheme 

Gate count (Kgate) 
Module w/o Pass reduction 

scheme [7] 
w/ Pass reduction 

scheme 
Total 29.7 25.1 Single-core of  

2D SPIHT  Packer 20.3 17.5 
Total 49.1 42.8 Single-core of  

2D iSPIHT Parser 14.2 11.2 
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reduction scheme presented in Section III.2 is applied to 
the 16×8-single design and the same synthesizing 
environment is used. The second row of Table 4 shows 
normalized throughput results of 2D SPIHT hardware 
designs. The 16×8-single design and the proposed design 
process the same number of pixels, 16×8 pixels and 
8×8×2 pixels, and therefore throughputs of those designs 
are same. The third row shows gate count results. Gate 
counts of the 16×8-single encoder and decoder designs 
are 117.8K and 146.1K, respectively. On the other hand, 
gate counts of the proposed encoder and decoder are 
76.5K and 107.8K, which are 41.3K and 38.3K smaller 
than those of the previous encoder and decoder designs, 
respectively. The fourth row shows results of which gate 
counts are divided by the normalized throughput of 2D 
SPIHT, which represents hardware area results 
normalized to the throughput. The results of the 16×8-
single encoder and decoder are 11.0 and 14.9 Kgate× 
cycle/pixel, respectively, which are 1.55 times and 1.35 
times larger than those of the proposed design. These 
results show that the proposed design is more efficient in 
hardware area than the previous design which simply 
increases the block size to improve throughput. Note that 

the 2D DWT module in the 16×8-single design requires 
longer latency than the proposed design because the 
width of 16×8 block is larger than that of the proposed 
design. Moreover, the transpose module which 
transposes coefficients into bit-planes requires longer 
latency as well. The last row of Table 4 shows internal 
memory size results. The 16×8-single design and the 
proposed design use one 16×8×4-bit memory and two 
8×8×4-bit memory, respectively, which means that the 
total internal memory sizes are same.  

 

2. Compression Performance 
 
This section presents compression performance results 

when the proposed method is applied to the HEVC. For 
the experiment, the HM13.0 reference software with the 
low delay P main configuration is used. As test 
sequences, two Class A (2560×1600), five Class B 
(1920×1080), and four Class E (1280×720) sequences 
with the 4:2:0 YUV format are used. In all test sequences, 
the number of frames is 30 and the first frame is I-frame 
while other frames are P-frames. Table 5 shows BDBR 
and BDPSNR results when MDA-SFL [6], 16×8-single 
SPIHT [7], and proposed algorithm are used as FMC. All 
algorithms use two target CRs, 25.0% and 50.0%. 
Results of the MDA-SFL in Table 5 are evaluated by 
using a software simulation. Originally, the MDA-SFL is 
a lossless coding algorithm, and therefore fixing the 
target CR is impossible. However, the iterative 
quantization method in [1] is applied to the MDA-SFL 
for comparison. In other words, when the bitstream 
length is larger than the TBL, a higher quantization level 

Table 4. Comparison between single and dual-core SPIHT 
hardware designs 

16×8-single [7] Proposed  
(8×8-dual)  

enc. dec. enc. dec. 
Norm. throughput (pixel/cycle) 10.7 9.8 10.7 9.8 

Gate counts (Kgate) 117.8 146.1 76.5 107.8 
Gate counts/norm. throughput 

(Kgate×cycle/pixel) 11.0 14.9 7.1 11.0 

Memory (bit) 512 0 512 0 
 
 

 
Table 5. BDBR(%) and BDPSNR(dB) performance of the previous and proposed methods 

BDBR (%) / BDPSNR (dB) 
8×8 MDA-SFL [6] 16×8 single [7] Proposed (8×8-dual) Test sequence 

CR = 25.0% CR = 50.0% CR = 25.0% CR = 50.0% CR = 25.0% CR = 50.0% 
Traffic 

PeopleOnStreet 
0.46 / -0.01 
0.17 / -0.01 

12.11 / -0.37 
4.13 / -0.18 

0.20 / -0.01 
0.08 / 0.00 

8.61 / -0.27 
3.56 / -0.16 

0.31 / -0.01 
0.26 / -0.01  

10.52 / -0.32 
4.25 / -0.19 

BQTerrace 
BasketballDrive 

Cactus 
Kimono 

ParkScene 

2.11 / -0.05 
-0.10 / 0.00 
0.61 / -0.02 
-0.14 / 0.00 
0.21 / -0.01 

23.56 / -0.47 
0.80 / -0.02 
11.40 / -0.26 
0.36 / -0.01 
8.05 / -0.23 

1.37 / -0.03 
0.04 / 0.00 
0.45 / -0.01 
-0.42 / 0.01 
0.12 / 0.00 

13.02 / -0.25 
1.03 / -0.02 
8.44 / -0.20 
0.54 / -0.02 
6.33 / -0.18 

1.83 / -0.04 
-0.09 / 0.00 
0.73 / -0.02 
-0.17 / 0.01 
0.17 / -0.01 

15.39 / -0.30 
1.73 / -0.04 
10.26 / -0.24 
0.80 / -0.03 
7.67 / -0.22 

FourPeople 
Johnny 

KristenAndSara 
Vidyo1 

0.54 / -0.02 
0.15 / -0.01 
0.21 / -0.01 
0.23 / -0.01 

15.13 / -0.50 
12.10 / -0.28 
16.16 / -0.47 
12.42 / -0.37 

0.43 / -0.01 
-0.07 / 0.00 
0.22 / -0.01 
0.23 / -0.01 

10.30 / -0.35 
7.92 / -0.19 
9.12 / -0.27 
8.22 / -0.25 

0.54 / -0.02 
0.00 / 0.00 
0.69 / -0.03 
0.53 / -0.02  

12.21 / -0.41 
10.30 / -0.23 
11.04 / -0.32 
10.58 / -0.32 

Average 0.40 / -0.01 10.57 / -0.29 0.24 / -0.01 7.01 / -0.20 0.44 / -0.01 8.61 / -0.24 
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is applied to the input data. The number of iterations 
determined by this quantization method varies with block 
complexity, and thereby disturbing on-the-fly operation. 
For the on-the-fly operation, many cores with different 
quantization levels may be used in parallel but the 
hardware costs increase in proportion to the number of 
quantization levels. As shown in the second, fourth, and 
sixth columns of Table 5, the previous and proposed 
algorithms with the target CR of 25% show similar 
BDBR and BDPSNR results on average. However, when 
the target CR increases to 50%, the average BDBR of the 
proposed algorithm is 1.96% lower than that of the 
MDA-SFL as shown in the third and seventh columns. In 
addition, the average BDPSNR of the proposed 
algorithm is 0.05 dB higher than that of the MDA-SFL. 
These results represent that the proposed algorithm is 
more effective than the lossy MDA-SFL, especially, 
when the target CR is high. Compared to the 16×8 single 
SPIHT algorithm, the average BDBR of the proposed 
algorithm is 1.60% higher. It is because transform-based 
coding algorithms show higher coding efficiency as the 
size of coding block increases. However, the proposed 
design is more effective in hardware implementation 
given that the 16×8 single design requires larger 
hardware costs as shown in Table 4. 

VI. CONCLUSIONS 

This paper extends the high-throughput SPIHT 
hardware design in [7] to be fine-scalable and exploits it 
as an FMC integrated with the HEVC encoder. The 
proposed hardware design processes small-sized blocks 
in parallel and pipelined manner, resulting in similar 
coding efficiency and low hardware cost compared to the 
previous design with the same throughput. In addition, 
the proposed pass reduction scheme reduces hardware 
costs, which are particularly critical in packer and parser 
modules. The proposed design for a lossy FMC in video 
codecs shows higher coding efficiency than the previous 
FMC design, and it is more effective in video codec 
systems requiring limited frame memory size, burst 
transferring protocol, and data random access. 
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