DOI QR코드

DOI QR Code

Effect of Enhancers on in vitro and in vivo Skin Permeation and Deposition of S-Methyl-ʟ-Methionine

  • Kim, Ki Taek (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Ji Su (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Min-Hwan (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Park, Ju-Hwan (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Jae-Young (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, WooIn (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Min, Kyung Kuk (CUSKIN Cosmeceutical and Biotechnology) ;
  • Song, Min Gyu (CUSKIN Cosmeceutical and Biotechnology) ;
  • Choi, Choon-Young (CUSKIN Cosmeceutical and Biotechnology) ;
  • Kim, Won-Serk (Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Oh, Hee Kyung (Department of Food and Nutrition, Jangan University) ;
  • Kim, Dae-Duk (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Received : 2016.11.15
  • Accepted : 2017.01.14
  • Published : 2017.07.01

Abstract

S-methyl-$\small{L}$-methionine (SMM), also known as vitamin U, is commercially available as skin care cosmetic products for its wound healing and photoprotective effects. However, the low skin permeation expected of SMM due to its hydrophilic nature with a log P value of -3.3, has not been thoroughly addressed. The purpose of this study thus was to evaluate the effect of skin permeation enhancers on the skin permeation/deposition of SMM. Among the enhancers tested for the in vitro skin permeation and deposition of SMM, oleic acid showed the most significant enhancing effect. Moreover, the combination of oleic acid and ethanol further enhanced in vitro permeation and deposition of SMM through hairless mouse skin. Furthermore, the combination of oleic acid and ethanol significantly increased the in vivo deposition of SMM in the epidermis/dermis for 12 hr, which was high enough to exert a therapeutic effect. Therefore, based on the in vitro and in vivo studies, the combination of oleic acid and ethanol was shown to be effective in improving the topical skin delivery of SMM, which may be applied in the cosmetic production process for SMM.

Keywords

References

  1. Barry, B. W. (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 14, 101-114. https://doi.org/10.1016/S0928-0987(01)00167-1
  2. Benson, H. A. (2005) Transdermal drug delivery: penetration enhancement techniques. Curr. Drug Deliv. 2, 23-33. https://doi.org/10.2174/1567201052772915
  3. Bond, J. R. and Barry, B. W. (1988) Limitation of hairless mouse skin as a model for in vitro permeation studies through human skin: hydration damage. J. Invest. Dermatol. 90, 486-489. https://doi.org/10.1111/1523-1747.ep12460958
  4. Calabro, K., Curtis, A., Calarneau, J. R., Krucker, T. and Bigio, I. (2011) Gender variation in the optical properties of skin in murine animal models. J. Biomed. Opt. 16, 011008. https://doi.org/10.1117/1.3525565
  5. Durrheim, H., Flynn, G. L., Higuchi, W. I. and Behl, C. R. (1980) Permeation of hairless mouse skin: 1. Experimental methods and comparison with human epidermal permeation by alkanols. J. Pharm. Sci. 69, 781-786. https://doi.org/10.1002/jps.2600690709
  6. Ichikawa, T., Ito, Y., Saegusa, Y., Iwai, T., Goso, Y., Ikezawa, T. and Ishihara, K. (2009) Effects of combination treatment with famotidine and methylmethionine sulfonium chloride on the mucus barrier of rat gastric mucosa. J. Gastroenterol. Hepatol. 24, 488-492. https://doi.org/10.1111/j.1440-1746.2008.05667.x
  7. Jung, E. C. and Maibach, H. I. (2015) Animal models for percutaneous absorption. J. Appl. Toxicol. 35, 1-10. https://doi.org/10.1002/jat.3004
  8. Jung, E. J., Kang, Y. P., Yoon, I. S., Kim, J. S., Kwon, S. W., Chung, S. J., Shim, C. K. and Kim, D. D. (2013) Effect of permeation enhancers on transdermal delivery of fluoxetine: in vitro and in vivo evaluation. Int. J. Pharm. 456, 362-369. https://doi.org/10.1016/j.ijpharm.2013.08.080
  9. Jung, E. J., Lee, E. Y., Choi, H. K., Ban, S. J., Choi, S. H., Kim, J. S., Yoon, I. S. and Kim, D. D. (2015) Development of drug-in adhesive patch formulation for transdermal delivery of fluoxetine: in vitro and in vivo evaluation. Int. J. Pharm. 487, 49-55. https://doi.org/10.1016/j.ijpharm.2015.04.012
  10. Karande, P., Jain, A. and Mitragotri, S. (2004) Discovery of transdermal penetration enhancers by high-throughput screening. Nat. Biotechnol. 22, 192-197. https://doi.org/10.1038/nbt928
  11. Kim, D. D. and Chien, Y. W. (1995) Transdermal delivery of zalcitabine: in vitro skin permeation study. AIDS 9, 1331-1336. https://doi.org/10.1097/00002030-199512000-00005
  12. Kim, W. S., Seo, H. M., Kim, W. K., Choi, J. S., Kim, I. Y. and Sung, J. H. (2015) The photoprotective effect of s-methylmethionine sulfonium in skin. Int. J. Mol. Sci. 16, 17088-17100. https://doi.org/10.3390/ijms160817088
  13. Kim, W. S., Yang, Y. J., Min, H. G., Song, M. G., Lee, J. S., Park, K. Y., Kim, J. J., Sung, J. H., Choi, J. S. and Cha, J. H. (2010) Accelerated wound healing by s-methylmethionine sulfonium: evidence of dermal fibroblast activation via the ERK 1/2 pathway. Pharmacology 85, 68-76. https://doi.org/10.1159/000276495
  14. Kopinski, J. S., Fogarty, R. and McVeigh, J. (2007) Effect of s-methylmethionine sulphonium chloride on oesophagogastric ulcers in pigs. Aust. Vet. J. 85, 362-367. https://doi.org/10.1111/j.1751-0813.2007.00197.x
  15. Koyama, Y., Bando, H., Yamashita, F., Takakura, Y., Sezaki, H. and Hashida, M. (1994) Comparative analysis of percutaneous absorption enhancement by d-limonene and oleic acid based on a skin diffusion model. Pharm. Res. 11, 377-383. https://doi.org/10.1023/A:1018904802566
  16. Lachenmeier, D. W. (2008) Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J. Occup. Med. Toxicol. 3, 26. https://doi.org/10.1186/1745-6673-3-26
  17. Lashmar, U. T., Hadgraft, J. and Thomas, N. (1989) Topical application of penetration enhancers to the skin of nude mice: a histopatholgical study. J. Pharm. Pharmacol. 41, 118-122. https://doi.org/10.1111/j.2042-7158.1989.tb06405.x
  18. Lauer, A. C., Lieb, L. M., Ramachandran, C., Flynn, G. L. and Weiner, N. D. (1995) Transfollicular drug delivery. Pharm. Res. 12, 179-186. https://doi.org/10.1023/A:1016250422596
  19. Marwah, H., Garg, T., Goyal, A. K. and Rath, G. (2016) Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 23, 564-578. https://doi.org/10.3109/10717544.2014.935532
  20. Patel, A. D. and Prajapati, N. K. (2012) Review on biochemical importance of vitamin-u. J. Chem. Pharm. Res. 4, 209-215.
  21. Rachakonda, V. K., Yerramsetty, K. M., Madihally, S. V., Robinson, R. L., Jr. and Gasem, K. A. (2008) Screening of chemical penetration enhancers for transdermal drug delivery using electrical resistance of skin. Pharm. Res. 25, 2697-2704. https://doi.org/10.1007/s11095-008-9696-y
  22. Scherb, J., Kreissl, J., Haupt, S. and Schieberle, P. (2009) Quantitation of s-methylmethionine in raw vegetables and green malt by a stable isotope dilution assay using LC-MS/MS: comparison with dimethyl sulfide formation after heat treatment. J. Agric. Food Chem. 57, 9091-9096. https://doi.org/10.1021/jf901765q
  23. Seo, J. E., Kim, S. and Kim, B. H. (2016) In vitro skin absorption tests of three types of parabens using Franz diffusion cell. J. Expo. Sci. Environ. Epidemiol. [Epub ahead of print].
  24. Seri, K., Amemiya, K., Sugimoto, H. and Kato, T. (1979) Effects of smethylmethionine (vitamin u) on experimental nephrotic hyperlipidemia. Arzneimittelforschung 29, 1517-1520.
  25. Sintov, A., Ze'evi, A., Uzan, R. and Nyska, A. (1999) Influence of pharmaceutical gel vehicles containing oleic acid/sodium oleate combinations on hairless mouse skin, a histological evaluation. Eur. J. Pharm. Biopharm. 47, 299-303. https://doi.org/10.1016/S0939-6411(99)00018-1
  26. Sokmen, B. B., Tunali, S. and Yanadaq, R. (2012) Effect of vitamin u (s-methyl methionine sulphonium chloride) on valproic acid induced liver injury in rats. Food Chem. Toxicol. 50, 3562-3566. https://doi.org/10.1016/j.fct.2012.07.056
  27. Songkro, S. (2009) An overview of skin penetration enhancers: penetration enhancing activity, skin irritation potential and mechanism of action. Songklanakarin J. Sci. Technol. 31, 299-321.
  28. Trommer, H. and Neubert, R. H. (2006) Overcoming the stratum corneum: the modulation of skin pernetration. Skin Pharmacol. Physiol. 19, 106-121. https://doi.org/10.1159/000091978
  29. Valiveti, S., Hammell, D. C., Earles, D. C. and Stinchcomb, A. L. (2004) Transdermal delivery of the synthetic cannabinoid WIN 55,212-2: in vitro/in vivo correlation. Pharm. Res. 21, 1137-1145. https://doi.org/10.1023/B:PHAM.0000032999.31948.2e
  30. Wahlberg, J. E. (1968) Transepidermal or transfollicular absorption? In vivo and in vitro studies in hairy and non-hairy guinea pig skin with sodium (22Na) and mercuric (203Hg) chlorides. Acta Derm. Venereol. 48, 336-344.

Cited by

  1. Coacervate microcapsules of vitamin U optimized by central composite design (CCD) pp.2093-6214, 2019, https://doi.org/10.1007/s40005-018-0407-3
  2. Non-Propellant Foams of Green Nano-Silver and Sulfadiazine: Development and In Vivo Evaluation for Burn Wounds vol.36, pp.8, 2019, https://doi.org/10.1007/s11095-019-2658-8
  3. Preparation and in vitro and in vivo Study of Asiaticoside-Loaded Nanoemulsions and Nanoemulsions-Based Gels for Transdermal Delivery vol.15, pp.None, 2017, https://doi.org/10.2147/ijn.s241923