References
- Bascom, C. C., Sipes, N. J., Coffey, R. J. and Moses, H. L. (1989) Regulation of epithelial cell proliferation by transforming growth factors. J. Cell. Biochem. 39, 25-32. https://doi.org/10.1002/jcb.240390104
- Bradford, L. W. (1976) Problems of ethics and behavior in the forensic sciences. J. Forensic. Sci. 21, 763-768.
-
Carmona-Cuenca, I., Roncero, C., Sancho, P., Caja, L., Fausto, N., Fernandez, M. and Fabregat, I. (2008) Upregulation of the NADPH oxidase NOX4 by TGF-
${\beta}$ in hepatocytes is required for its proapoptotic activity. J. Hepatol. 49, 965-976. https://doi.org/10.1016/j.jhep.2008.07.021 - Carrillo, M. C., Kanai, S., Nokubo, M. and Kitani, K. (1991) (-) deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci. 48, 517-521. https://doi.org/10.1016/0024-3205(91)90466-O
- Cheng, G., Cao, Z., Xu, X., van Meir, E. G. and Lambeth, J. D. (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269, 131-140. https://doi.org/10.1016/S0378-1119(01)00449-8
-
Datta, P. K., Blake, M. C. and Moses, H. L. (2000) Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-
${\beta}$ -induced physical and functional interactions between smads and Sp1. J. Biol. Chem. 275, 40014-40019. https://doi.org/10.1074/jbc.C000508200 -
Ellenrieder, V. (2008)
$TGF{\beta}$ regulated gene expression by Smads and Sp1/KLF-like transcription factors in cancer. Anticancer Res. 28, 1531-1539. -
Foitzik, K., Lindner, G., Mueller-Roever, S., Maurer, M., Botchkareva, N., Botchkarev, V., Handjiski, B., Metz, M., Hibino, T., Soma, T., Dotto, G. P. and Paus, R. (2000) Control of murine hair follicle regression (catagen) by TGF-
${\beta}1$ in vivo. FASEB J. 14, 752-760. https://doi.org/10.1096/fasebj.14.5.752 -
Foitzik, K., Paus, R., Doetschman, T. and Dotto, G. P. (1999) The TGF-
${\beta}2$ isoform is both a required and sufficient inducer of murine hair follicle morphogenesis. Dev. Biol. 212, 278-289. https://doi.org/10.1006/dbio.1999.9325 -
Guyton, K. Z., Liu, Y., Gorospe, M., Xu, Q. and Holbrook, N. J. (1996) Activation of mitogen-activated protein kinase by
$H_2O_2$ . Role in cell survival following oxidant injury. J. Biol. Chem. 271, 4138-4142. https://doi.org/10.1074/jbc.271.8.4138 -
Hong, Y. H., Peng, H. B., La Fata, V. and Liao, J. K. (1997) Hydrogen peroxide-mediated transcriptional induction of macrophage colonystimulating factor by TGF-
${\beta}1$ . J. Immunol. 159, 2418-2423. -
Hu, P. P., Shen, X., Huang, D., Liu, Y., Counter, C. and Wang, X. F. (1999) The MEK pathway is required for stimulation of p21 (WAF1/CIP1) by transforming growth factor-
${\beta}$ . J. Biol. Chem. 274, 35381-35387. https://doi.org/10.1074/jbc.274.50.35381 - Hyun, S., Kim, M. S., Song, Y. S., Bak, Y., Ham, S. Y., Lee, D. H., Hong, J. and Yoon, D. Y. (2015) Peroxisome proliferator-activated receptor-gamma agonist 4-O-Methylhonokiol induces apoptosis by triggering the intrinsic apoptosis pathway and inhibiting the PI3K/Akt survival pathway in SiHa human cervical cancer cells. J. Microbiol. Biotechnol. 25, 334-342. https://doi.org/10.4014/jmb.1411.11073
-
Inui, S., Fukuzato, Y., Nakajima, T., Yoshikawa, K. and Itami, S. (2002) Androgen-inducible TGF-
${\beta}1$ from balding dermal papilla cells inhibits epithelial cell growth: a clue to understand paradoxical effects of androgen on human hair growth. FASEB J. 16, 1967-1969. https://doi.org/10.1096/fj.02-0043fje - Kim, S. C., Kang, J. I., Kim, M. K., Boo, H. J., Park, D. B., Lee, Y. K., Kang, J. H., Yoo, E. S., Kim, Y. H. and Kang, H. K. (2011) The hair growth promoting effect of 4-O-Methylhonokiol. Eur..J. Dermatol. 21, 1012-1014.
- Krishan, A. (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J. Cell Biol. 66, 188-193. https://doi.org/10.1083/jcb.66.1.188
-
Lee, N. J., Oh, J. H., Ban, J. O., Shim, J. H., Lee, H. P., Jung, J. K., Ahn, B. W., Yoon, D. Y., Han, S. B., Ham, Y. W. and Hong, J. T. (2013) 4-O-Methylhonokiol, a
$PPAR{\gamma}$ agonist, inhibits prostate tumour growth: p21-mediated suppression of NF-${\kappa}B$ activity. Br. J. Pharmacol. 168, 1133-1145. https://doi.org/10.1111/j.1476-5381.2012.02235.x - Lee, Y. J., Choi, I. S., Park, M. H., Lee, Y. M., Song, J. K., Kim, Y. H., Kim, K. H., Hwang, D. Y., Jeong, J. H., Yun, Y. P., Oh, K. W., Jung, J. K., Han, S. B. and Hong, J. T. (2011) 4-O-Methylhonokiol attenuates memory impairment in presenilin 2 mutant mice through reduction of oxidative damage and inactivation of astrocytes and the ERK pathway. Free Radic. Biol. Med. 50, 66-77. https://doi.org/10.1016/j.freeradbiomed.2010.10.698
- Lee, Y. K., Choi, I. S., Kim, Y. H., Kim, K. H., Nam, S. Y., Yun, Y. W., Lee, M. S., Oh, K. W. and Hong, J. T. (2009a) Neuriteoutgrowth effect of 4-O-Methylhonokiol by induction of neurotrophic factors through ERK activation. Neurochem. Res. 34, 2251-2260. https://doi.org/10.1007/s11064-009-0024-7
- Lee, Y. K., Yuk, D. Y., Kim, T. I., Kim, Y. H., Kim, K. T., Kim, K. H., Lee, B. J., Nam, S. Y. and Hong, J. T. (2009b) Protective effect of the ethanol extract of Magnolia officinalis and 4-O-Methylhonokiol on scopolamine-induced memory impairment and the inhibition of acetylcholinesterase activity. J. Nat. Med. 63, 274-282. https://doi.org/10.1007/s11418-009-0330-z
-
Li, C., Garland, J. M. and Kumar, S. (2001) Re: Role of transforming growth factor-
${\beta}$ signaling in cancer. J. Natl. Cancer Inst. 93, 555-556. https://doi.org/10.1093/jnci/93.7.555 -
Li, C. Y., Suardet, L. and Little, J. B. (1995) Potential role of WAF1/Cip1/p21 as a mediator of TGF-
${\beta}$ cytoinhibitory effect. J. Biol. Chem. 270, 4971-4974. https://doi.org/10.1074/jbc.270.10.4971 -
Massague, J. and Wotton, D. (2000) Transcriptional control by the TGF-
${\beta}$ /Smad signaling system. EMBO J. 19, 1745-1754. https://doi.org/10.1093/emboj/19.8.1745 - Misra, H. P. and Fridovich, I. (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170-3175.
-
Moustakas, A., Pardali, K., Gaal, A. and Heldin, C. H. (2002) Mechanisms of TGF-
${\beta}$ signaling in regulation of cell growth and differentiation. Immunol. Lett. 82, 85-91. https://doi.org/10.1016/S0165-2478(02)00023-8 -
Oh, J. H., Kang, L. L., Ban, J. O., Kim, Y. H., Kim, K. H., Han, S. B. and Hong, J. T. (2009) Anti-inflammatory effect of 4-O-Methylhonokiol, compound isolated from Magnolia officinalis through inhibition of NF-
${\kappa}B$ . Chem. Biol. Interact. 180, 506-514. https://doi.org/10.1016/j.cbi.2009.03.014 -
Palazuelos, J., Klingener, M. and Aguirre, A. (2014)
$TGF{\beta}$ signaling regulates the timing of CNS myelination by modulating oligodendrocyte progenitor cell cycle exit through SMAD3/4/FoxO1/Sp1. J. Neurosci. 34, 7917-7930. https://doi.org/10.1523/JNEUROSCI.0363-14.2014 -
Pardali, K., Kurisaki, A., Moren, A., ten Dijke, P., Kardassis, D. and Moustakas, A. (2000) Role of Smad proteins and transcription factor Sp1 in p21 (Waf1/Cip1) regulation by transforming growth factor-
${\beta}$ . J. Biol. Chem. 275, 29244-29256. https://doi.org/10.1074/jbc.M909467199 - Paus, R., Muller-Rover, S., Van Der Veen, C., Maurer, M., Eichmuller, S., Ling, G., Hofmann, U., Foitzik, K., Mecklenburg, L. and Handjiski, B. (1999) A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J. Invest. Dermatol. 113, 523-532. https://doi.org/10.1046/j.1523-1747.1999.00740.x
-
Peshavariya, H. M., Chan, E. C., Liu, G. S., Jiang, F. and Dusting, G. J. (2014) Transforming growth factor-
${\beta}1$ requires NADPH oxidase 4 forangiogenesis in vitro and in vivo. J. Cell. Mol. Med. 18, 1172-1183. https://doi.org/10.1111/jcmm.12263 - Reagan-Shaw, S., Breur, J. and Ahmad, N. (2006) Enhancement of UVB radiation-mediated apoptosis by sanguinarine in HaCaT human immortalized keratinocytes. Mol. Cancer Ther. 5, 418-429. https://doi.org/10.1158/1535-7163.MCT-05-0250
-
Samarakoon, R., Overstreet, J. M. and Higgins, P. J. (2013) TGF-
${\beta}$ signaling in tissue fibrosis: Redox controls, target genes and therapeutic opportunities. Cell. Signal. 25, 264-268. https://doi.org/10.1016/j.cellsig.2012.10.003 - Seiberg, M., Marthinuss, J. and Stenn, K. S. (1995) Changes in expression of apoptosis-associated genes in skin mark early catagen. J. Invest. Dermatol. 104, 78-82. https://doi.org/10.1111/1523-1747.ep12613555
-
Senturk, S., Mumcuoglu, M., Gursoy-Yuzugullu, O., Cingoz, B., Akcali, K. C. and Ozturk, M. (2010) Transforming growth factor-
${\beta}$ induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology 52, 966-974. https://doi.org/10.1002/hep.23769 -
Silberstein, G. B. and Daniel, C. W. (1987) Reversible inhibition of mammary gland growth by transforming growth factor-
${\beta}$ . Science 237, 291-293. https://doi.org/10.1126/science.3474783 -
Soma, T., Tsuji, Y. and Hibino, T. (2002) Involvement of transforming growth factor-
${\beta}2$ in catagen induction during the human hair cycle. J. Invest. Dermatol. 118, 993-997. https://doi.org/10.1046/j.1523-1747.2002.01746.x -
Thannickal, V. J., Aldweib, K. D. and Fanburg, B. L. (1998) Tyrosine phosphorylation regulates
$H_2O_2$ production in lung fibroblasts stimulated by transforming growth factor${\beta}1$ . J. Biol. Chem. 273, 23611-23615. https://doi.org/10.1074/jbc.273.36.23611 -
Welker, P., Foitzik, K., Bulfone-Paus, S., Henz, B. M. and Paus, R. (1997) Hair cycle-dependent changes in the gene expression and protein content of transforming factor
${\beta}$ 1 and${\beta}$ 3 in murine skin. Arch. Dermatol. Res. 289, 554-557. https://doi.org/10.1007/s004030050239 -
Yan, F., Wang, Y., Wu, X., Peshavariya, H., Dusting, G., Zhang, M. and Jiang, F. (2014) Nox4 and redox signaling mediate TGF-
${\beta}$ -induced endothelial cell apoptosis and phenotypic switch. Cell Death Dis. 5, e1010. https://doi.org/10.1038/cddis.2013.551 -
Yoon, Y. S., Lee, J. H., Hwang, S. C., Choi, K. S. and Yoon, G. (2005) TGF
${\beta}1$ induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells. Oncogene 24, 1895-1903. https://doi.org/10.1038/sj.onc.1208262 - Zhang, Z., Chen, J., Jiang, X., Wang, J., Yan, X., Zheng, Y., Conklin, D. J., Kim, K. S., Kim, K. H., Tan, Y., Kim, Y. H. and Cai, L. (2014) The magnolia bioactive constituent 4-O-Methylhonokiol protects against high-fat diet-induced obesity and systemic insulin resistance in mice. Oxid. Med. Cell. Longev. 2014, 965954.
Cited by
- miR-770–5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1 vol.220, pp.None, 2017, https://doi.org/10.1016/j.ecoenv.2021.112372