DOI QR코드

DOI QR Code

PIG3 Regulates p53 Stability by Suppressing Its MDM2-Mediated Ubiquitination

  • Jin, Min (Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine) ;
  • Park, Seon-Joo (Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine) ;
  • Kim, Seok Won (Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine) ;
  • Kim, Hye Rim (Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine) ;
  • Hyun, Jin Won (Department of Biochemistry, School of Medicine, Jeju National University) ;
  • Lee, Jung-Hee (Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine)
  • Received : 2017.04.07
  • Accepted : 2017.04.22
  • Published : 2017.07.01

Abstract

Under normal, non-stressed conditions, intracellular p53 is continually ubiquitinated by MDM2 and targeted for degradation. However, in response to severe genotoxic stress, p53 protein levels are markedly increased and apoptotic cell death is triggered. Inhibiting the ubiquitination of p53 under conditions where DNA damage has occurred is therefore crucial for preventing the development of cancer, because if cells with severely damaged genomes are not removed from the population, uncontrolled growth can result. However, questions remain about the cellular mechanisms underlying the regulation of p53 stability. In this study, we show that p53-inducible gene 3 (PIG3), which is a transcriptional target of p53, regulates p53 stability. Overexpression of PIG3 stabilized both endogenous and transfected wild-type p53, whereas a knockdown of PIG3 lead to a reduction in both endogenous and UV-induced p53 levels in p53-proficient human cancer cells. Using both in vivo and in vitro ubiquitination assays, we found that PIG3 suppressed both ubiquitination- and MDM2-dependent proteasomal degradation of p53. Notably, we demonstrate that PIG3 interacts directly with MDM2 and promoted MDM2 ubiquitination. Moreover, elimination of endogenous PIG3 in p53-proficient HCT116 cells decreased p53 phosphorylation in response to UV irradiation. These results suggest an important role for PIG3 in regulating intracellular p53 levels through the inhibition of p53 ubiquitination.

Keywords

References

  1. Ashcroft, M., Taya, Y. and Vousden, K. H. (2000) Stress signals utilize multiple pathways to stabilize p53. Mol. Cell. Biol. 20, 3224-3233. https://doi.org/10.1128/MCB.20.9.3224-3233.2000
  2. Asher, G., Lotem, J., Cohen, B., Sachs, L. and Shaul, Y. (2001) Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc. Natl. Acad. Sci. U.S.A. 98, 1188-1193. https://doi.org/10.1073/pnas.98.3.1188
  3. Asher, G., Lotem, J., Kama, R., Sachs, L. and Shaul, Y. (2002a) NQO1 stabilizes p53 through a distinct pathway. Proc. Natl. Acad. Sci. U.S.A. 99, 3099-3104. https://doi.org/10.1073/pnas.052706799
  4. Asher, G., Lotem, J., Sachs, L., Kahana, C. and Shaul, Y. (2002b) Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc. Natl. Acad. Sci. U.S.A. 99, 13125-13130. https://doi.org/10.1073/pnas.202480499
  5. Barak, Y., Juven, T., Haffner, R. and Oren, M. (1993) mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461-468.
  6. Burger, A. M. and Seth, A. K. (2004) The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur. J. Cancer 40, 2217-2229. https://doi.org/10.1016/j.ejca.2004.07.006
  7. Contente, A., Dittmer, A., Koch, M. C., Roth, J. and Dobbelstein, M. (2002) A polymorphic microsatellite that mediates induction of PIG3 by p53. Nat. Genet. 30, 315-320. https://doi.org/10.1038/ng836
  8. de Graaf, P., Little, N. A., Ramos, Y. F., Meulmeester, E., Letteboer, S. J. and Jochemsen, A. G. (2003) Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. J. Biol. Chem. 278, 38315-38324. https://doi.org/10.1074/jbc.M213034200
  9. Fernald, K. and Kurokawa, M. (2013) Evading apoptosis in cancer. Trends Cell Biol. 23, 620-633. https://doi.org/10.1016/j.tcb.2013.07.006
  10. Francoz, S., Froment, P., Bogaerts, S., De Clercq, S., Maetens, M., Doumont, G., Bellefroid, E. and Marine, J. C. (2006) Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc. Natl. Acad. Sci. U.S.A. 103, 3232-3237. https://doi.org/10.1073/pnas.0508476103
  11. Haupt, Y., Maya, R., Kazaz, A. and Oren, M. (1997) Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299. https://doi.org/10.1038/387296a0
  12. Ito, A., Kawaguchi, Y., Lai, C. H., Kovacs, J. J., Higashimoto, Y., Appella, E. and Yao, T. P. (2002) MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 21, 6236-6245. https://doi.org/10.1093/emboj/cdf616
  13. Ito, A., Lai, C. H., Zhao, X., Saito, S., Hamilton, M. H., Appella, E. and Yao, T. P. (2001) p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20, 1331-1340. https://doi.org/10.1093/emboj/20.6.1331
  14. Kang, M. Y., Kim, H. B., Piao, C., Lee, K. H., Hyun, J. W., Chang, I. Y. and You, H. J. (2013) The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ. 20, 117-129. https://doi.org/10.1038/cdd.2012.102
  15. Kawai, H., Wiederschain, D., Kitao, H., Stuart, J., Tsai, K. K. and Yuan, Z. M. (2003) DNA damage-induced MDMX degradation is mediated by MDM2. J. Biol. Chem. 278, 45946-45953. https://doi.org/10.1074/jbc.M308295200
  16. Kobet, E., Zeng, X., Zhu, Y., Keller, D. and Lu, H. (2000) MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc. Natl. Acad. Sci. U.S.A. 97, 12547-12552. https://doi.org/10.1073/pnas.97.23.12547
  17. Kotsinas, A., Aggarwal, V., Tan, E. J., Levy, B. and Gorgoulis, V. G. (2012) PIG3: a novel link between oxidative stress and DNA damage response in cancer. Cancer Lett. 327, 97-102. https://doi.org/10.1016/j.canlet.2011.12.009
  18. Kubbutat, M. H., Jones, S. N. and Vousden, K. H. (1997) Regulation of p53 stability by Mdm2. Nature 387, 299-303. https://doi.org/10.1038/387299a0
  19. Lane, D. P. (1992) Cancer. p53, guardian of the genome. Nature 358, 15-16. https://doi.org/10.1038/358015a0
  20. Lee, J. H., Kang, Y., Khare, V., Jin, Z. Y., Kang, M. Y., Yoon, Y., Hyun, J. W., Chung, M. H., Cho, S. I., Jun, J. Y., Chang, I. Y. and You, H. J. (2010) The p53-inducible gene 3 (PIG3) contributes to early cellular response to DNA damage. Oncogene 29, 1431-1450. https://doi.org/10.1038/onc.2009.438
  21. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323-331. https://doi.org/10.1016/S0092-8674(00)81871-1
  22. Levine, A. J. and Oren, M. (2009) The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 9, 749-758. https://doi.org/10.1038/nrc2723
  23. Li, B., Shang, Z. F., Yin, J. J., Xu, Q. Z., Liu, X. D., Wang, Y., Zhang, S. M., Guan, H. and Zhou, P. K. (2013) PIG3 functions in DNA damage response through regulating DNA-PKcs homeostasis. Int. J. Biol. Sci. 9, 425-434. https://doi.org/10.7150/ijbs.6068
  24. Momand, J., Zambetti, G. P., Olson, D. C., George, D. and Levine, A. J. (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237-1245. https://doi.org/10.1016/0092-8674(92)90644-R
  25. Oliner, J. D., Pietenpol, J. A., Thiagalingam, S., Gyuris, J., Kinzler, K. W. and Vogelstein, B. (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362, 857-860. https://doi.org/10.1038/362857a0
  26. Pan, Y. and Chen, J. (2003) MDM2 promotes ubiquitination and degradation of MDMX. Mol. Cell. Biol. 23, 5113-5121. https://doi.org/10.1128/MCB.23.15.5113-5121.2003
  27. Perry, M. E., Piette, J., Zawadzki, J. A., Harvey, D. and Levine, A. J. (1993) The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 90, 11623-11627. https://doi.org/10.1073/pnas.90.24.11623
  28. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. and Vogelstein, B. (1997) A model for p53-induced apoptosis. Nature 389, 300-305. https://doi.org/10.1038/38525
  29. Pomerantz, J., Schreiber-Agus, N., Liegeois, N. J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H. W., Cordon-Cardo, C. and DePinho, R. A. (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92, 713-723. https://doi.org/10.1016/S0092-8674(00)81400-2
  30. Porte, S., Valencia, E., Yakovtseva, E. A., Borras, E., Shafqat, N., Debreczeny, J. E., Pike, A. C., Oppermann, U., Farres, J., Fita, I. and Pares, X. (2009) Three-dimensional structure and enzymatic function of proapoptotic human p53-inducible quinone oxidoreductase PIG3. J. Biol. Chem. 284, 17194-17205. https://doi.org/10.1074/jbc.M109.001800
  31. Poyurovsky, M. V., Priest, C., Kentsis, A., Borden, K. L., Pan, Z. Q., Pavletich, N. and Prives, C. (2007) The Mdm2 RING domain Cterminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J. 26, 90-101. https://doi.org/10.1038/sj.emboj.7601465
  32. Samuels-Lev, Y., O'Connor, D. J., Bergamaschi, D., Trigiante, G., Hsieh, J. K., Zhong, S., Campargue, I., Naumovski, L., Crook, T. and Lu, X. (2001) ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell 8, 781-794. https://doi.org/10.1016/S1097-2765(01)00367-7
  33. Shieh, S. Y., Ikeda, M., Taya, Y. and Prives, C. (1997) DNA damageinduced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325-334. https://doi.org/10.1016/S0092-8674(00)80416-X
  34. Sui, G., Affar E. B., Shi, Y., Brignone, C., Wall, N. R., Yin, P., Donohoe, M., Luke, M. P., Calvo, D., Grossman, S. R. and Shi, Y. (2004) Yin Yang 1 is a negative regulator of p53. Cell 117, 859-872. https://doi.org/10.1016/j.cell.2004.06.004
  35. Tang, J., Qu, L. K., Zhang, J., Wang, W., Michaelson, J. S., Degenhardt, Y. Y., El-Deiry, W. S. and Yang, X. (2006) Critical role for Daxx in regulating Mdm2. Nat. Cell Biol. 8, 855-862. https://doi.org/10.1038/ncb1442
  36. Uldrijan, S., Pannekoek, W. J. and Vousden, K. H. (2007) An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. EMBO J. 26, 102-112. https://doi.org/10.1038/sj.emboj.7601469
  37. Unger, T., Juven-Gershon, T., Moallem, E., Berger, M., Vogt Sionov, R., Lozano, G., Oren, M. and Haupt, Y. (1999) Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J. 18, 1805-1814. https://doi.org/10.1093/emboj/18.7.1805
  38. Wang, H., Luo, K., Tan, L. Z., Ren, B. G., Gu, L. Q., Michalopoulos, G., Luo, J. H. and Yu, Y. P. (2012) p53-induced gene 3 mediates cell death induced by glutathione peroxidase 3. J. Biol. Chem. 287, 16890-16902. https://doi.org/10.1074/jbc.M111.322636
  39. Zhang, X., Wang, W., Wang, H., Wang, M. H., Xu, W. and Zhang, R. (2013) Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop. Oncogene 32, 2782-2791. https://doi.org/10.1038/onc.2012.289
  40. Zhang, Z. and Zhang, R. (2008) Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation. EMBO J. 27, 852-864. https://doi.org/10.1038/emboj.2008.25
  41. Zhou, X., Hao, Q., Liao, J., Zhang, Q. and Lu, H. (2013) Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress. Oncogene 32, 388-396. https://doi.org/10.1038/onc.2012.63

Cited by

  1. Transcriptome profiling reveals the role of ZBTB38 knock-down in human neuroblastoma vol.7, pp.2167-8359, 2019, https://doi.org/10.7717/peerj.6352
  2. Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo vol.40, pp.1, 2017, https://doi.org/10.1186/s13046-021-01895-w
  3. Comparison of toxic effects of atorvastatin and gemfibrozil on Daphnia magna vol.252, pp.None, 2022, https://doi.org/10.1016/j.cbpc.2021.109224