References
- Ashcroft, M., Taya, Y. and Vousden, K. H. (2000) Stress signals utilize multiple pathways to stabilize p53. Mol. Cell. Biol. 20, 3224-3233. https://doi.org/10.1128/MCB.20.9.3224-3233.2000
- Asher, G., Lotem, J., Cohen, B., Sachs, L. and Shaul, Y. (2001) Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc. Natl. Acad. Sci. U.S.A. 98, 1188-1193. https://doi.org/10.1073/pnas.98.3.1188
- Asher, G., Lotem, J., Kama, R., Sachs, L. and Shaul, Y. (2002a) NQO1 stabilizes p53 through a distinct pathway. Proc. Natl. Acad. Sci. U.S.A. 99, 3099-3104. https://doi.org/10.1073/pnas.052706799
- Asher, G., Lotem, J., Sachs, L., Kahana, C. and Shaul, Y. (2002b) Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc. Natl. Acad. Sci. U.S.A. 99, 13125-13130. https://doi.org/10.1073/pnas.202480499
- Barak, Y., Juven, T., Haffner, R. and Oren, M. (1993) mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461-468.
- Burger, A. M. and Seth, A. K. (2004) The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur. J. Cancer 40, 2217-2229. https://doi.org/10.1016/j.ejca.2004.07.006
- Contente, A., Dittmer, A., Koch, M. C., Roth, J. and Dobbelstein, M. (2002) A polymorphic microsatellite that mediates induction of PIG3 by p53. Nat. Genet. 30, 315-320. https://doi.org/10.1038/ng836
- de Graaf, P., Little, N. A., Ramos, Y. F., Meulmeester, E., Letteboer, S. J. and Jochemsen, A. G. (2003) Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. J. Biol. Chem. 278, 38315-38324. https://doi.org/10.1074/jbc.M213034200
- Fernald, K. and Kurokawa, M. (2013) Evading apoptosis in cancer. Trends Cell Biol. 23, 620-633. https://doi.org/10.1016/j.tcb.2013.07.006
- Francoz, S., Froment, P., Bogaerts, S., De Clercq, S., Maetens, M., Doumont, G., Bellefroid, E. and Marine, J. C. (2006) Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc. Natl. Acad. Sci. U.S.A. 103, 3232-3237. https://doi.org/10.1073/pnas.0508476103
- Haupt, Y., Maya, R., Kazaz, A. and Oren, M. (1997) Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299. https://doi.org/10.1038/387296a0
- Ito, A., Kawaguchi, Y., Lai, C. H., Kovacs, J. J., Higashimoto, Y., Appella, E. and Yao, T. P. (2002) MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 21, 6236-6245. https://doi.org/10.1093/emboj/cdf616
- Ito, A., Lai, C. H., Zhao, X., Saito, S., Hamilton, M. H., Appella, E. and Yao, T. P. (2001) p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20, 1331-1340. https://doi.org/10.1093/emboj/20.6.1331
- Kang, M. Y., Kim, H. B., Piao, C., Lee, K. H., Hyun, J. W., Chang, I. Y. and You, H. J. (2013) The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ. 20, 117-129. https://doi.org/10.1038/cdd.2012.102
- Kawai, H., Wiederschain, D., Kitao, H., Stuart, J., Tsai, K. K. and Yuan, Z. M. (2003) DNA damage-induced MDMX degradation is mediated by MDM2. J. Biol. Chem. 278, 45946-45953. https://doi.org/10.1074/jbc.M308295200
- Kobet, E., Zeng, X., Zhu, Y., Keller, D. and Lu, H. (2000) MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc. Natl. Acad. Sci. U.S.A. 97, 12547-12552. https://doi.org/10.1073/pnas.97.23.12547
- Kotsinas, A., Aggarwal, V., Tan, E. J., Levy, B. and Gorgoulis, V. G. (2012) PIG3: a novel link between oxidative stress and DNA damage response in cancer. Cancer Lett. 327, 97-102. https://doi.org/10.1016/j.canlet.2011.12.009
- Kubbutat, M. H., Jones, S. N. and Vousden, K. H. (1997) Regulation of p53 stability by Mdm2. Nature 387, 299-303. https://doi.org/10.1038/387299a0
- Lane, D. P. (1992) Cancer. p53, guardian of the genome. Nature 358, 15-16. https://doi.org/10.1038/358015a0
- Lee, J. H., Kang, Y., Khare, V., Jin, Z. Y., Kang, M. Y., Yoon, Y., Hyun, J. W., Chung, M. H., Cho, S. I., Jun, J. Y., Chang, I. Y. and You, H. J. (2010) The p53-inducible gene 3 (PIG3) contributes to early cellular response to DNA damage. Oncogene 29, 1431-1450. https://doi.org/10.1038/onc.2009.438
- Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323-331. https://doi.org/10.1016/S0092-8674(00)81871-1
- Levine, A. J. and Oren, M. (2009) The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 9, 749-758. https://doi.org/10.1038/nrc2723
- Li, B., Shang, Z. F., Yin, J. J., Xu, Q. Z., Liu, X. D., Wang, Y., Zhang, S. M., Guan, H. and Zhou, P. K. (2013) PIG3 functions in DNA damage response through regulating DNA-PKcs homeostasis. Int. J. Biol. Sci. 9, 425-434. https://doi.org/10.7150/ijbs.6068
- Momand, J., Zambetti, G. P., Olson, D. C., George, D. and Levine, A. J. (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237-1245. https://doi.org/10.1016/0092-8674(92)90644-R
- Oliner, J. D., Pietenpol, J. A., Thiagalingam, S., Gyuris, J., Kinzler, K. W. and Vogelstein, B. (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362, 857-860. https://doi.org/10.1038/362857a0
- Pan, Y. and Chen, J. (2003) MDM2 promotes ubiquitination and degradation of MDMX. Mol. Cell. Biol. 23, 5113-5121. https://doi.org/10.1128/MCB.23.15.5113-5121.2003
- Perry, M. E., Piette, J., Zawadzki, J. A., Harvey, D. and Levine, A. J. (1993) The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 90, 11623-11627. https://doi.org/10.1073/pnas.90.24.11623
- Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. and Vogelstein, B. (1997) A model for p53-induced apoptosis. Nature 389, 300-305. https://doi.org/10.1038/38525
- Pomerantz, J., Schreiber-Agus, N., Liegeois, N. J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H. W., Cordon-Cardo, C. and DePinho, R. A. (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92, 713-723. https://doi.org/10.1016/S0092-8674(00)81400-2
- Porte, S., Valencia, E., Yakovtseva, E. A., Borras, E., Shafqat, N., Debreczeny, J. E., Pike, A. C., Oppermann, U., Farres, J., Fita, I. and Pares, X. (2009) Three-dimensional structure and enzymatic function of proapoptotic human p53-inducible quinone oxidoreductase PIG3. J. Biol. Chem. 284, 17194-17205. https://doi.org/10.1074/jbc.M109.001800
- Poyurovsky, M. V., Priest, C., Kentsis, A., Borden, K. L., Pan, Z. Q., Pavletich, N. and Prives, C. (2007) The Mdm2 RING domain Cterminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J. 26, 90-101. https://doi.org/10.1038/sj.emboj.7601465
- Samuels-Lev, Y., O'Connor, D. J., Bergamaschi, D., Trigiante, G., Hsieh, J. K., Zhong, S., Campargue, I., Naumovski, L., Crook, T. and Lu, X. (2001) ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell 8, 781-794. https://doi.org/10.1016/S1097-2765(01)00367-7
- Shieh, S. Y., Ikeda, M., Taya, Y. and Prives, C. (1997) DNA damageinduced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325-334. https://doi.org/10.1016/S0092-8674(00)80416-X
- Sui, G., Affar E. B., Shi, Y., Brignone, C., Wall, N. R., Yin, P., Donohoe, M., Luke, M. P., Calvo, D., Grossman, S. R. and Shi, Y. (2004) Yin Yang 1 is a negative regulator of p53. Cell 117, 859-872. https://doi.org/10.1016/j.cell.2004.06.004
- Tang, J., Qu, L. K., Zhang, J., Wang, W., Michaelson, J. S., Degenhardt, Y. Y., El-Deiry, W. S. and Yang, X. (2006) Critical role for Daxx in regulating Mdm2. Nat. Cell Biol. 8, 855-862. https://doi.org/10.1038/ncb1442
- Uldrijan, S., Pannekoek, W. J. and Vousden, K. H. (2007) An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. EMBO J. 26, 102-112. https://doi.org/10.1038/sj.emboj.7601469
- Unger, T., Juven-Gershon, T., Moallem, E., Berger, M., Vogt Sionov, R., Lozano, G., Oren, M. and Haupt, Y. (1999) Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J. 18, 1805-1814. https://doi.org/10.1093/emboj/18.7.1805
- Wang, H., Luo, K., Tan, L. Z., Ren, B. G., Gu, L. Q., Michalopoulos, G., Luo, J. H. and Yu, Y. P. (2012) p53-induced gene 3 mediates cell death induced by glutathione peroxidase 3. J. Biol. Chem. 287, 16890-16902. https://doi.org/10.1074/jbc.M111.322636
- Zhang, X., Wang, W., Wang, H., Wang, M. H., Xu, W. and Zhang, R. (2013) Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop. Oncogene 32, 2782-2791. https://doi.org/10.1038/onc.2012.289
- Zhang, Z. and Zhang, R. (2008) Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation. EMBO J. 27, 852-864. https://doi.org/10.1038/emboj.2008.25
- Zhou, X., Hao, Q., Liao, J., Zhang, Q. and Lu, H. (2013) Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress. Oncogene 32, 388-396. https://doi.org/10.1038/onc.2012.63
Cited by
- Transcriptome profiling reveals the role of ZBTB38 knock-down in human neuroblastoma vol.7, pp.2167-8359, 2019, https://doi.org/10.7717/peerj.6352
- Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo vol.40, pp.1, 2017, https://doi.org/10.1186/s13046-021-01895-w
- Comparison of toxic effects of atorvastatin and gemfibrozil on Daphnia magna vol.252, pp.None, 2022, https://doi.org/10.1016/j.cbpc.2021.109224