DOI QR코드

DOI QR Code

Characteristics of Ammonia Removal from a Synthetic Wastewater in a Jet Loop Reactor with a Two-fluid Venturi-type Swirl Nozzle

이유체 벤츄리형 선회 노즐이 장착된 제트 루프 반응기에서 합성폐수 중의 암모니아 제거특성

  • Noh, Da-ji (Department of Environmental Engineering, Pukyong National University) ;
  • Yun, Chan-Su (Department of Environmental Engineering, Pukyong National University) ;
  • Lim, Jun-Heok (Department of Chemical Engineering, Pukyong National University) ;
  • Won, Yong-Sun (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Tae-Yoon (Department of Environmental Engineering, Pukyong National University) ;
  • Lee, Jea-Keun (Department of Environmental Engineering, Pukyong National University)
  • Received : 2017.02.16
  • Accepted : 2017.04.05
  • Published : 2017.06.30

Abstract

We investigated the performance of a jet loop reactor (JLR) with the two-fluid venturi-type swirl nozzle (TVSN) during experiment for ammonia removal by air stripping from a synthetic wastewater, and compared it with that of a JLR with the two-fluid venturi-type conventional nozzle (TVCN), with the variation of pH, liquid circulation rate ($Q_L$), and air flow rate ($Q_G$). Their performance levels were compared based on the ammonia removal efficiency and overall mass transfer coefficient ($K_La$). Investigated parameters in a JLR were pH (10-12), air flow rate ($Q_G=5-20L\;min^{-1}$), and liquid circulation rate ($Q_L=25-35L\;min^{-1}$). Throughout the experiment, the ammonia removal efficiency and $K_La$ in a JLR with TVSN was higher than in a JLR with TVCN. This may be due to the enhanced turbulent intensity by swirling flow formed in the JLR with TVSN compared to that with TVCN. Further, we obtained higher $K_La$ when pH, $Q_L$ and $Q_G$ were increased. In particular, $K_La$ was increased more efficiently by increasing $Q_G$ than by increasing pH and $Q_L$.

본 연구에서는 합성폐수로부터 암모니아 탈기 시 이유체 벤츄리형 선회 노즐이 장착된 제트 루프 반응기의 성능을 평가하고자 하였다. 이를 위해 이유체 벤츄리형 선회 노즐과 일반 노즐이 장착된 각각의 제트 루프 반응기를 이용하여 조업조건 변화에 따른 암모니아 제거효율과 총괄물질전달계수($K_La$)를 각각 얻은 후, 이를 통해 성능을 비교하였다. 운전변수로는 pH(pH = 10-12), 액체순환유량($Q_L=25-35L\;min^{-1}$), 공기유입량($Q_G=5-20L\;min^{-1}$)을 변화시키며 실험하였다. 실험결과, 동일한 조업조건에서 이유체 벤츄리형 선회 노즐(two-fluid venturi-type swirl nozzle, TVSN)이 장착된 제트 루프 반응기가 이유체 벤츄리형 일반 노즐(two-fluid venturi-type conventional nozzle, TVCN)이 장착된 제트 루프 반응기보다 암모니아 제거효율과 $K_La$가 높게 나타났다. 이와 같은 결과는 이유체 벤츄리형 선회 노즐이 장착된 제트 루프 반응기에서 형성된 선회류 흐름에 의해 난류강도가 이유체 벤츄리형 일반 노즐이 장착된 제트 루프 반응기에 비해 높기 때문이라 판단된다. 또한, 실험조건 범위에서 $K_La$는 pH, 공기유입량 및 액체순환유량이 증가할수록 증가하는 경향을 보였으며, 특히, 실험변수 중 공기유입량이 pH나 액체순환유량에 비해 $K_La$에 미치는 영향이 큰 것으로 나타났다.

Keywords

References

  1. Jang, S. H., Kim, G. E., Shin, H. M., Song, Y. C., Lee, W. K., and Youn, Y. N., "Study on Removal of Ammonia Nitrogen from Metal Working Fluids Using Aluminum Electrode," J. Korea Soc. Waste Manag., 33(7), 710-715 (2016). https://doi.org/10.9786/kswm.2016.33.7.710
  2. Lee, B. J., and Cho, S. H., "Removal of Ammonia-Nitrogen Contained in Landfill Leachate by Ammonia Stripping(II)," J. Korean Soc. Environ. Eng., 24(2), 219-229 (2002).
  3. Yoon, A. H., Park, N. B., Bae, J. H., Jun, H. B., and Kwon, Y. B., "Treatment of Food Waste Leachate Using Pure-Oxygen Jet Loop Reactor (JLR)," J. Korean Soc. Water Wastewater, 24(6), 763-773 (2010).
  4. Oh, D. Y., Jenog, J. Y., Choi, W. H., and Park, J. Y., "Modeling of Ammonia Mass Transfer Using a Hollow Fiber Membrane Contactor," J. Korean Soc. Water Wastewater, 25(4), 503-510 (2011).
  5. Yoon, T. K., Lee, G. C., Jung, B. G., Han, Y. R., and Sung, N. C., "Effects of Operating Parameters on the Removal Performance of Ammonia Nitrogen by Electrodialysis," Clean Technol., 17(4), 363-369 (2011). https://doi.org/10.7464/KSCT.2011.17.4.363
  6. Jafarpour, M. M., Foolad, Ar., Mansouri, M. K., Nikbakhsh, Z., and Saeedizade, H., "Ammonia Removal from Nitrogeneous Industrial Waste Water Using Iranian Natural Zeolite of Clinoptilolite type," World Academy of Sci., Eng. and Technol., 4(10), 481-487 (2010).
  7. Na, C. K., and Song, M. K., "Removal Property of Ammonia Nitrogen from Aqueous Solution by Rice Husk Grafted with Acrylic Acid in Batch Mode and Fixed Bed Columns," J. Korea Soc. Waste Manag., 31(5), 487-497 (2014). https://doi.org/10.9786/kswm.2014.31.5.487
  8. Shin, S. Y., Koo, B. H., Kim, T. H., Lee, Y. H., and Ahn, J. H., "Ammonia Nitrogen Removal in Wastewater Using Microwave Irradiation," J. Korean Soc. Water Environ., 30(5), 486-490 (2014). https://doi.org/10.15681/KSWE.2014.30.5.486
  9. Yuan, M. H., Chen, Y. H., Tsai, J. Y., and Chang, C. Y., "Ammonia Removal from Ammonia-Rich Wastewater by Air Stripping Using a Rotating Packed Bed," Process Safety and Environ. Protection, 102, 777-785 (2016). https://doi.org/10.1016/j.psep.2016.06.021
  10. Bohner, K., and Blenke, H., "Gasgehalt und flussigkeitsumwalzung im Schlaufenreaktor," Verfahrenstechnik, 6, 50 (1972).
  11. Kang, D. Y., Lim, J. H., Lee, T. Y., and Lee, J. K., "Study of Struvite Crystallization in A Semi-Batch Jet Loop Fluidized Bed Reactor," Korean J. Chem. Eng., 32(11), 2342-2346 (2015). https://doi.org/10.1007/s11814-015-0074-2
  12. Cha, G. E., Kim, M. R., and Lee, J. K., "Phosphorus Removal from Wastewater by Struvite Formation in a Jet Loop Crystallizer," J. Korea Soc. Waste Manag., 30(8), 923-930 (2013). https://doi.org/10.9786/kswm.2013.30.8.923
  13. Kang, D. Y., Kim, M. R., Lim, J. H., Lee, T. Y., and Lee, J. K., "Neutralization of Alkaline Wastewater with $CO_2$ in a Continuous Flow Jet Loop Reactor," Korean Chem. Eng. Res., 54(1), 101-107 (2016). https://doi.org/10.9713/kcer.2016.54.1.101
  14. Cha, G. E., Sung, H. J., Lim, J. H., Lee, T. Y., and Lee, J. K., "$CO_2$ Absorption Characteristics of a Jet Loop Reactor with a Two-Fluid Swirl Nozzle in an Alkaline Solution," Korean J. Chem. Eng., 31(4), 701-705 (2014). https://doi.org/10.1007/s11814-013-0275-5
  15. Meseguer-Lloret, S., Molins-Legua, C., and CampinsFalco, P., "Ammonium Determination in Water Samples by Using OPA-NAC Reagent: A Comparative Study with Nessler and Ammonium Selective Electrode Methods," Intern. J. Environ. Anal. Chem., 82(7), 475-489 (2002). https://doi.org/10.1080/0306731021000018107
  16. Degermenci, N., Ate, O. N., and Yildiz, Y., "Ammonia Removal by Air Stripping in a Semi-Batch Jet Loop Reactor," J. Ind. Eng. Chem., 18(1), 399-404 (2012). https://doi.org/10.1016/j.jiec.2011.11.098
  17. Nugroho, D. H., Adisalamun, and Machdar, I., "Recovery of Ammonia Solutions from Fertilizer Industry Wastewater by Air Stripping Using Jet Bubble Column," Proc. 5th Sriwijaya International Seminar on Energy, Environ. Sci. and Technol., 1(1), 102-108 (2014).
  18. Capodaglio, A. G., Hlavinek, P., and Raboni, M., "Physico-Chemical Technologies for Nitrogen Removal from Wastewaters: A Review," Revista Ambiente & Agua, 10(3), 481-498 (2015).
  19. An, J. S., Lim, J. H., Back, Y. J., Chung, T. Y., and Chung, H. K., "Effect of the Physical Parameters and Alkalinity in the Ammonia Stripping," J. Korean Soc. Environ. Eng., 33(8), 583-590 (2011). https://doi.org/10.4491/KSEE.2011.33.8.583
  20. Prasad, K. Y., and Ramanujam, T. K., "Gas Holdup and Overall Volumetric Mass-Transfer Coefficient in a Modified Reversed Flow Jet Loop Reactor," Can. J. Chem. Eng., 73(2), 190-195 (1995). https://doi.org/10.1002/cjce.5450730204
  21. Jain, D. K., Patwari, A. N., Khan, A. A., and Bhagawantha RAO, M., "Liquid Circulation Characteristics in Jet Loop Reactors," Can. J. Chem. Eng., 68(6), 1047-1051 (1990). https://doi.org/10.1002/cjce.5450680622