References
-
Etacheri, V., Valentin, C. D., Schneider, J., Bahnemann, D., and Pillai, S. C., "Visible-Light Activation of
$TiO_2$ Photocatalysts: Advances in Theory and Experiments," J. Photochem. Photobiol. C: Photochem. Rev., 25, 1-29 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.08.003 -
Kumar, S. G., and Devi, L. G., "Review on Modified
$TiO_2$ Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics," J. Phys. Chem. A, 115, 13211-13241 (2011). https://doi.org/10.1021/jp204364a - Hernandez-Ramirez, A., and Medina-Ramirez, I., in: Hernandez-Ramirez, A., and Medina-Ramirez, I., Eds., Semiconducting Materials in Photocatalytic Semiconductors, Synthesis, Characterization, and Environmental Applications, Springer, Switzerland, pp. 1-40 (2015).
- Yue, X., Yi, S., Wang, R., Zhang, Z., and Qiu, S., "Cadmium Sulfide and Nickel Synergetic Co-catalysts Supported on Graphitic Carbon Nitride for Visible-Light-Driven Photocatalytic Hydrogen Evolution," Sci. Rep., 6, 22268 (2016). https://doi.org/10.1038/srep22268
- Zhu, H., Jianga, R., Xiao, L., Chang, Y., Guan, Y., Li, X., and Zeng, G., "Photocatalytic Decolorization and Degradation of Congo Red on Innovative Crosslinked Chitosan/Nano-CdS Composite Catalyst under Visible Light Irradiation," J. Hazard. Mater., 169, 933-940 (2009). https://doi.org/10.1016/j.jhazmat.2009.04.037
- Fan, Y., Deng, M., Chen, G., Zhang, Q., Luo, Y., Li, D., and Meng, Q., "Effect of Calcination on the Photocatalytic Performance of CdS under Visible Light Irradiation," J. Alloy. Compd., 509, 1477-1481 (2011). https://doi.org/10.1016/j.jallcom.2010.10.044
- Chen, F., Jia, D., Cao, Y., Jin, X., and Liu, A., "Facile Synthesis of CdS Nanorods with Enhanced Photocatalytic Activity," Ceram. Int., 41, 14604-14609 (2015). https://doi.org/10.1016/j.ceramint.2015.07.179
- Sehati, S., and Entezari, M. H., "Sono-intercalation of CdS Nanoparticles into the Layers of Titanate Facilitates the Sunlight Degradation of Congo Red," J. Colloid Interface Sci., 462, 130-139 (2016). https://doi.org/10.1016/j.jcis.2015.09.070
-
Li, Q., Meng, H., Zhou, P., Zheng, Y., Wang, J., Yu, J., and Gong, J., "
$Cd_{0.5}Zn_{0.5}S$ Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic$H_2$ -Production Activity," ACS Catal., 3, 882-889 (2013). https://doi.org/10.1021/cs4000975 -
Zhou, Y., Wang, Y., Wen, T., Zhang, S., Chang, B., and Guo, Y., "Mesoporous
$Cd_{1-x}Zn_xS$ Microspheres with Tunable Bandgap and High Specific Surface Areas for Enhance Visible-Light-Driven Hydrogen Generation," J. Colloid Interface Sci., 467, 97-104 (2016). https://doi.org/10.1016/j.jcis.2016.01.003 -
Li, N., Zhou, B., Guo, P., Zhou, J., and Jing, D., "Fabrication of Noble-Metal-Free
$Cd_{0.5}Zn_{0.5}S$ /NiS Hybrid Photocatalysts for Efficient Solar Hydrogen Evolution," Int. J. Hydrogen Energy, 38, 11268-11277 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.067 -
Xiong, Z., Zheng, M., Zhu, C., Zhang, B., Ma, L., and Shen, W., "One-Step Synthesis of Highly Efficient Three-Dimensional
$Cd_{1-x}Zn_xS$ Photocatalysts for Visible Light Photocatalytic Water Splitting," Nanoscale Res. Lett., 8, 334-339 (2013). https://doi.org/10.1186/1556-276X-8-334 -
Huang, M., Yu, J., Deng, C., Huang, Y., Fan, M., Li, B., Tong, Z., Zhang, F., and Dong, L., "3D Nanospherical
$Cd_xZn_{1-x}S$ /Reduced Graphene Oxide Composites with Superior Photocatalytic Activity and Photocorrosion Resistance," Appl. Surf. Sci., 365, 227-239 (2016). https://doi.org/10.1016/j.apsusc.2015.12.244 -
Wang, X., Tian, H., Cui, X., Zheng, W., and Liu, Y., "One- Pot Hydrothermal Synthesis of Mesoporous
$Zn_xCd_{1-x}S$ /Reduced Graphene Oxide Hybrid Material and Its Enhanced Photocatalytic Activity," Dalton Trans., 43, 12894-12903 (2014). https://doi.org/10.1039/C4DT01094A -
Narayanam, P. K., Soni, P., Srinivasa, R. S., Talwar, S. S., and Major, S. S., "Strong and Tunable Blue Luminescence from
$Cd_{1-x}Zn_xS$ Alloy Nanocrystallites Grown in Langmuir-Blodgett Multilayers," J. Phys. Chem., C, 117, 4314-4325 (2013). https://doi.org/10.1021/jp312546a -
Min, Y., Fan, J., Xu, Q., and Zhang, S., "High Visible-Photoactivity of Spherical
$Cd_{0.5}Zn_{0.5}S$ Coupled with Grahpene Composite for Decolorizing Organic Dyes," J. Alloy. Compd., 609, 46-53(2014). https://doi.org/10.1016/j.jallcom.2014.04.143 -
Zhang, J., Xu, Q., Qiao, S. Z., and Yu, J., "Enhanced Visible-Light Hydrogen‐Production Activity of Copper‐Modified
$Zn_xCd_{1-x}S$ ," ChemSusChem, 6, 2009-2015 (2013). https://doi.org/10.1002/cssc.201300409 -
Lee, H. J., Jin, Y., Park, S. S., Hong, S. S., and Lee, G. D., "Photocatalytic Degradation of Rhodamine B Using
$Cd_{0.5}Zn_{0.5}S$ /ZnO Photocatalysts under Visible Light Irradiation," Appl. Chem. Eng., 26, 356-361 (2015). https://doi.org/10.14478/ace.2015.1046 - McBride, R. A., Kelly, J. M., and McCormack, D. E., "Growth of Well-Defined ZnO Microparticles by Hydroxide Ion Hydrolysis of Zinc Salts," J. Mater. Chem., 13, 1196-1201 (2003). https://doi.org/10.1039/b211723c
- Khan, Z. R., Zulfequar, M., and Khan, M. S., "Chemical Synthesis of CdS Nanoparticles and Their Optical and Dielectric Studies," J. Mater, Sci., 46, 5412-5416(2011). https://doi.org/10.1007/s10853-011-5481-0
- Sepulveda-Guzman, S., Reeja-Jayan, B., de la Rosa, E. Torres-Castro, A. Gonzalez-Gonzalez, V., and Jose-Yacaman, M., "Synthesis of Assembled ZnO Structures by Precipitation Method in Aqueous Media," Mater. Chem. Phys., 11, 172-178 (2009).
-
Kozlova, E. A., Markovskaya, D. A., Cherepanova, S. V., Saraev, A. A., Gerasimov, E. Y., Perevalov, T. V., Kaichev, V. V., and Parmon, V. N., "Novel Photoctalysts Based on
$Cd_{1-x}Zn_xS/Zn(OH)_2$ for the Hydrogen Evolution from Water Solution of Ethanol," Int. J. Hydrogen Energy, 39, 18758-18769 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.145 -
Xie, S., Lu, X., Zhai, T., Gan, J., Li, W., Xu, M., Yu, M., Zhang, Y.-M., and Tong, Y., "Controllable Synthesis of
$Zn_xCd_{1-x}S$ @ZnO Core-Shell Nanorods with Enhanced Photocatalytic Activity," Langmuir, 28, 10558-10564 (2012). https://doi.org/10.1021/la3013624 -
Wang, W., Zhu, W., and Xu, H., "Monodisperse, Mesoporous
$Zn_xCd_{1-x}S$ Nanoparticles as Stable Visible-Light-Driven Photocatalysts," J. Phys. Chem. C, 112, 16754-16758 (2008). https://doi.org/10.1021/jp805359r -
Cui, W., Ma, S., Liu, L., Hu, J., Liang, Y., and McEvoy, J. G., "Photocatalytic Activity of
$Cd_{1-x}Zn_xS/K_2Ti_4O_9$ for Rhodamine B Degradation under Visible Light Irradiation," Appl. Surf. Sci., 271, 171-181 (2013). https://doi.org/10.1016/j.apsusc.2013.01.156 -
Li, D., Wu, Z., Xing, C., Jiang, D., Chen, M., Shi, W., and Yuan, S., "Novel
$Zn_{0.8}Cd_{0.2}S/g-C_SN4$ Heterojunctions with Superior Visible-Light Photocatalytic Activity: Hydrothermal Synthesis and Mechanism Study," J. Mol. Catal. A: Chem., 395, 261-268 (2014). https://doi.org/10.1016/j.molcata.2014.08.036 - Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., "Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,' Adv. Mater., 13, 113-116 (2001). https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
-
Li, Y., Ye, M., Yang, C., Li, X., and Li, Y., "Composition- and Shape-Controlled Synthesis and Optical Properties of
Alloyed Nanoparticles," Adv. Funct. Mater., 15, 433-441 (2005). https://doi.org/10.1002/adfm.200400320 - Kulkarni, S. K., Winkler, U., Deshmukh, N., Borse, P. H., Funk, R., and Umbach, E., "Investigations on Chemically Capped CdS, ZnS and ZnCdS Nanoparticles," Appl. Surf. Sci., 169-170, 438-446 (2001). https://doi.org/10.1016/S0169-4332(00)00700-5
-
Xu, X., Lu, R., Zhao, X., Zhu, Y., Xu, S., and Zhang, F., "Novel Mesoporous
$Zn_xCd_{1-x}S$ Nanoparticles as Highly Efficient Photocatalysts," Appl. Catal. B: Environ., 125, 11-20 (2012). https://doi.org/10.1016/j.apcatb.2012.05.018 -
Shouli, B., Xin, L., Dianqing, L., Song, C., Ruixian, L., and Aifan, C., "Synthesis of ZnO Nanorods and Its Application in
$NO_2$ Sensors," Sens. Actuators B, 153, 110-116(2011). https://doi.org/10.1016/j.snb.2010.10.010 - Liangyuan, C., Zhiyong, L., Shouli, B., Kewei, Z., Dianqing, L., Aifan, C., and Liu, C. C., "Synthesis of 1-Dimensional ZnO and Its Sensing Property for CO," Sens. Actuators B, 143, 620-628 (2010). https://doi.org/10.1016/j.snb.2009.10.009
- Li, W. J., Shi, E. W., Zhong, W. Z., and Yin, Z. W., "Growth Mechanism and Growth Habit of Oxide Crystals," J. Crystal Growth, 203, 186-196 (1999). https://doi.org/10.1016/S0022-0248(99)00076-7
- De la Rosa, E., Sepulveda-Guzman, S., Reeja-Jayan, B., Torres, A., Salas, P., Elizondo, M., and Jose-Yacaman, M., "Controlling the Growth and Luminescence Properties of Well-Faceted ZnO Nanorods," J. Phys. Chem. C, 111, 8489-8495 (2007). https://doi.org/10.1021/jp071846t
- Wahab, R. Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., and Shin, H.-S., "Low Temperature Solution Synthesis and Characterization of ZnO Nano-Flowers," Mater. Res. Bull., 42, 1640-1648 (2007). https://doi.org/10.1016/j.materresbull.2006.11.035
-
Zhang, J., Yu, J., Jaroniec, M., and Gong, J. R., "Noble Metal-Free Reduced Graphehe Oxide-
$Zn_xCd_{1-x}S$ Nanocomposite with Enhanced Solar Photocatalytic$H_2$ -Production," Nano Lett., 12, 4584-4589 (2012). https://doi.org/10.1021/nl301831h -
Yu, K. Yang, S., He, H., Sun, C., Gu, C., and Ju, Y., "Visible Light-Driven Photocatalytic Degradation of Rhodamine B over
$NaBiO_3$ : Pathways and Mechanism," J. Phys. Chem. A, 113, 10024-10032 (2009). https://doi.org/10.1021/jp905173e -
Wu, T., Liu, G., Zhao, J., Hidaka, H., and Serpone, N., "Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous
$TiO_2$ Dispersions," J. Phys. Chem. B, 102, 5845-5851 (1998). https://doi.org/10.1021/jp980922c -
Kozlova, E. A., Cherepanova, S. V., Markovskaya, D. V., Saraev, A. A., Gerasimov, E. Y., and Parmon, V. N., "Novel Photocatalysts
$Pt/Cd_{1-x}Zn_xS/ZnO/Zn(OH)_2$ : Activation during Hydrogen Evolution from Aqueous Solutions of Ethanol under Visible Light," Appl. Catal. B: Environ., 183, 197-205 (2016). https://doi.org/10.1016/j.apcatb.2015.10.042 -
Lei, Z., You, W., Liu, M., Zhou, G., Takata, T., Hara, M., Domen, K., and Li, C., "Photocatalytic Water Reduction under Visible Light on a Novel
$ZnIn_2S_4$ Catalyst Synthesized by Hydrothermal Method," Chem. Commun., 2142-2143 (2003). -
Wei, S., Shifu, C., Sujuan, Z., Wei, Z., Huaye, Z., and Xiaoling, Y., "Preparation and Characterization of p-n Heterojunction Photocatalyst
$p-CuBi_2O_4/n-TiO_2$ with High Photocatalytic Activity under Visible and UV Light Irradiation," J. Nanopart. Res., 12, 1355-1366 (2010). https://doi.org/10.1007/s11051-009-9672-4 -
Zong, X., Yan, H., Wu, G., Ma, G., Wen, F., Wang, L., and Li, C., "Enhancement of Photocatalytic
$H_2$ Evolution on CdS by Loading$MoS_2$ as Cocatalyst under Visible Light Irradiation," J. Am. Chem. Soc., 130, 7176-7177 (2008). https://doi.org/10.1021/ja8007825 -
Huang, H., Li, D., Lin, Q., Zhang, W., Shao, Y., Chen, Y., Sun, M., and Fu, X., "Efficient Degradation of Benzene over
$LaVO_4/TiO_2$ Nanocrystalline Heterojunction Photocatalyst under Visible Light Irradiation," Environ. Sci. Technol., 43, 4164-4168 (2009). https://doi.org/10.1021/es900393h -
Chen, C., Zhao, W., Li, J., and Zhao, J., "Formation and Identification of Intermediates in Visible-Light-Assisted Photogegradation of Sulforhodamine-B Dye in Aqueous
$TiO_2$ Dispersion," Environ. Sci. Technol., 36, 3604-3611 (2002). https://doi.org/10.1021/es0205434 -
Zhuang, J., Dai, W., Tian, Q., Li, Z., Xie, L., Wang, J., and Liu, P., "Photocatalytic Degradation of RhB over
$TiO_2$ Bilayer Films: Effect of Defects and Their Location," Langmuir, 26, 9686-9694 (2010). https://doi.org/10.1021/la100302m -
Cruz, A. M., and Perez, U. M. G., "Photocatalytic Properties of
$BiVO_4$ Prepared by the Co-precipitation Method: Degradation of Rhodamine B and Possible Reaction Mechanisms under Visible Irradiation," Mater. Res. Bull., 45, 135-141 (2010). https://doi.org/10.1016/j.materresbull.2009.09.029 -
Chen, F. Zhao, J., and Hidaka, H., "Highly Selective Deethylation of Rodamine B: Adsorption and Photooxidation Pathways of the Dye on the
$TiO_2/SiO_2$ Composite Photocatalyst," Int. J. Photoenergy, 5, 209-217 (2003). https://doi.org/10.1155/S1110662X03000345 - Takirawa, T., Watanabe, T., and Honda, K., "Photocatalysis through Excitation of Adsorbates. 2. A Comparative Study of Rhodamine B and Methylene Blue on Cadmium Sulfide," J. Phys. Chem., 82, 1391-1396 (1978). https://doi.org/10.1021/j100501a014
-
Li, X., and Ye, J., "Photocatalytic Degradation of Rhodamine B over
$Pb_3Nb_4O_{13}$ /Fumed$SiO_2$ Composite under Visible Light Irradiation," J. Phys. Chem. C., 111, 13109-13116 (2007). https://doi.org/10.1021/jp072752m -
Merka, O., Yarovyi, V., Bahnemann, D.W., and Wark, M., "pH-Control of the Photocatalytic Degradation Mechanism of Rhodamine B over
$Pb_3Nb_4O_{13}$ ," J. Phys. Chem. C., 115, 8014-8023 (2011).
Cited by
- 가시광선하에서 CdS와 CdZnS/ZnO 광촉매를 이용한 로다민 B, 메틸 오렌지 및 메틸렌 블루의 광분해 반응 vol.26, pp.4, 2017, https://doi.org/10.7464/ksct.2020.26.4.311