References
- National Research Council, "Toxicological Effects of Methylmercury," Committee on the Toxicological Effects of Methylmercury, Board on Environmental Studies and Toxicology, Commission on Life Sciences, National Academy Press, Washington, DC (2000).
- Pavlish, J. H., Sondreal, E. A., Mann, M. D., Olson, E. S., Galbreath, K. C., Laudal. D. L., and Benson, S. A., "Status Review of Mercury Control Options for Coal-Fired Power Plants," Fuel Process Technol., 82, 89-165 (2003). https://doi.org/10.1016/S0378-3820(03)00059-6
- Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., and Nater, E. A., "The Case for Atmospheric Mercury Contamination in Remote Areas," Environ. Sci. Technol., 32, 1-7 (1998). https://doi.org/10.1021/es970284w
- Ji, L., Sreekanth, P. M., Smirniotis, P. G., Thiel, S. W., and Pinto, N. G., "Manganese Oxide/Titania Materials for Removal of NOx and Elemental Mercury from Flue Gas," Energy Fuels, 22(4), 2299-2306 (2008). https://doi.org/10.1021/ef700533q
- Ham, S. W., and Nam, I. S., "Selective Catalytic Reduction of Nitrogen Oxide by Ammonia," Catal., The Royal Soc. Chem., Cambridge, 16, 236-271 (2002).
-
Ham, S. W., Soh, B. W., and Nam, I. S., "Sulfur Poisoning and Tolerance of SCR Catalyst to Remove NO by
$NH_3$ ," J. Korean Ind. Eng. Chem., 15(4), 373-385 (2004). - Vidic, R. D., and Siler, D. P., "Vapor-phase Elemental Mercury Adsorption by Activated Carbon Impregnated with Chloride and Chelating Agents," Carbon, 39(1), 3-14 (2001). https://doi.org/10.1016/S0008-6223(00)00081-6
- Krishnan, S. V., Gullett, B. K., and Jorewlczt, W., "Sorption of Elemental Mercury by Activated Carbons," Environ. Sci. Technol., 28(8), 1506-1512 (1994). https://doi.org/10.1021/es00057a020
- Lee, C., Srivastava, R. K., Ghorishi, S., Hastings, T., and Stevens, F., J., "Investigation of Selective Catalytic Reduction Impact on Mercury Speciation Under Simulated NOx Emission Control Conditions," J. Air Waste & Manage. Assoc., 54, 1560-1566 (2004). https://doi.org/10.1080/10473289.2004.10471009
- Niksa, S., and Fujiwara, N., J., "A Predictive Mechanism for Mercury Oxidation on Selective Catalytic Reduction Catalysts Under Coal-Derived Flue Gas," J. Air & Waste Manage. Assoc., 55, 1866-1875 (2005). https://doi.org/10.1080/10473289.2005.10464779
- Straube, S., Hahn, T., and Koeser, H., "Adsorption and Oxidation of Mercury in Tail-End SCR-DeNOx Plants-Bench Scale Investigations and Speciation Experiments," Appl. Catal. B: Environ., 79, 286-295 (2008). https://doi.org/10.1016/j.apcatb.2007.10.031
- Hocquel, M., "The Behaviour and Fate of Mercury in Coal-Fired Power Plants with Downstream Air Pollution Control Devices," VDI Verlag: Dusseldorf, Germany (2004).
- Eswaran, S., and Stenger, H., "Understanding Mercury Conversion in Selective Catalytic Reduction (SCR) Catalysts," Energy Fuels., 19, 2328-2334 (2005). https://doi.org/10.1021/ef050087f
- Hong, H. J., Ham, S. W., Kim, M. H., Lee, S. M., and Lee, J. B., "Characteristics of Commercial SCR Catalyst for the Oxidation of Gaseous Elemental Mercury with Respect to Reaction Conditions," Korean J. Chem. Eng., 27(4), 1117-1122 (2010). https://doi.org/10.1007/s11814-010-0175-x
-
Kim, M. H., Ham, S. W., and Lee, J. B., "Oxidation of Gaseous Elemental Mercury by Hydrochloric Acid over
$CuCl_2/TiO_2$ -based catalysts in SCR process," Appl. Catal. B: Environ., 99, 272-278 (2010). https://doi.org/10.1016/j.apcatb.2010.06.032 - Srivastava, R. K., Hutson, K., Martin, B., Princiotta, F., and Staudt, J., "Control of Mercury Emissions from Coal-Fired Electric Utility Boilers," Environ. Sci. Technol., March 1, 1385-1393 (2006).
- Sliger, R. N., Kramlich, J. C., and Marinov, N. M., "Towards the Development of a Chemical Kinetic Model for the Homogeneous Oxidation of Mercury by Chlorine Species," Fuel Process. Technol., 65-66, 423-438 (2000). https://doi.org/10.1016/S0378-3820(99)00108-3
-
Hong, H. J., and Ham, S. W., "Activity of
$V_2O_5-WO_3/TiO_2$ -based SCR Catalyst for the Oxidation of Gas-Phase Elemental Mercury," Clean Technol., 17(4), 370-378 (2011). https://doi.org/10.7464/KSCT.2011.17.4.370 - Galbreath, K., and Zygarlicke, C., "Mercury Transformations in Coal Combustion Flue Gas," Fuel Process. Technol., 65-66, 289-310 (2000). https://doi.org/10.1016/S0378-3820(99)00102-2
- Senior, C., Sarofim, A., Zeng, T., Helble, J., and Mamani-Paco, R., "Gas-phase Transformations of Mercury in Coal-Fired Power Plants," Fuel Process Technol., 63, 197-213 (2000). https://doi.org/10.1016/S0378-3820(99)00097-1
-
Hranisavljevic, J., and Fontijn, A., "Kinetics of Ground-State Cd Reactions with
$Cl_2$ ,$O_2$ and HCl over Wide Temperature Ranges," J. Phys. Chem., 101, 2323-2326 (1997). https://doi.org/10.1021/jp963074z -
Lietti, L., Forzatti, P., and Berti, F., "Role of the Redox Properties in the SCR of NO by
$NH_3$ over$V_2O_5-WO_3/TiO_2$ Catalysts," Catal. Lett., 41, 35-39 (1996). https://doi.org/10.1007/BF00811709 - Dunn, J. P., Koppula, P. R., Stenger, H. G., and Wachs, I., "Oxidation of Sulfur Dioxide to Sulfur Trioxide Over Supported Vanadia Catalysts," Appl. Catal. B: Environ., 19, 103-117 (1998). https://doi.org/10.1016/S0926-3373(98)00060-5
-
Choi, E. Y., Nam, I. S., and Kim, Y. G., "TPD Study of Mordenite-Type Zeolites for Selective Catalytic Reduction of NO by
$NH_3$ ," J. Catal., 161, 597-604 (1996). https://doi.org/10.1006/jcat.1996.0222 - Chen, J. P., Buzanowski, M. A., Yang, R. T., and Cichanowicz, J. E., "Deactivation of the Vanadia Catalyst in the Selective Catalytic Reduction Process," J. Air & Waste Manage. Assoc., 40, 1403-1049 (1990). https://doi.org/10.1080/10473289.1990.10466793